Lastrucci Andrea, Wandael Yannick, Barra Angelo, Ricci Renzo, Pirrera Antonia, Lepri Graziano, Gulino Rosario Alfio, Miele Vittorio, Giansanti Daniele
Department of Allied Health Professions, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy.
Centro TISP, ISS Via Regina Elena 299, 00161 Rome, Italy.
J Clin Med. 2024 Dec 2;13(23):7337. doi: 10.3390/jcm13237337.
The application of chatbots and NLP in radiology is an emerging field, currently characterized by a growing body of research. An umbrella review has been proposed utilizing a standardized checklist and quality control procedure for including scientific papers. This review explores the early developments and potential future impact of these technologies in radiology. The current literature, comprising 15 systematic reviews, highlights potentialities, opportunities, areas needing improvements, and recommendations. This umbrella review offers a comprehensive overview of the current landscape of natural language processing (NLP) and natural language models (NLMs), including chatbots, in healthcare. These technologies show potential for improving clinical decision-making, patient engagement, and communication across various medical fields. However, significant challenges remain, particularly the lack of standardized protocols, which raises concerns about the reliability and consistency of these tools in different clinical contexts. Without uniform guidelines, variability in outcomes may hinder the broader adoption of NLP/NLM technologies by healthcare providers. Moreover, the limited research on how these technologies intersect with medical devices (MDs) is a notable gap in the literature. Future research must address these challenges to fully realize the potential of NLP/NLM applications in healthcare. Key future research directions include the development of standardized protocols to ensure the consistent and safe deployment of NLP/NLM tools, particularly in high-stake areas like radiology. Investigating the integration of these technologies with MD workflows will be crucial to enhance clinical decision-making and patient care. Ethical concerns, such as data privacy, informed consent, and algorithmic bias, must also be explored to ensure responsible use in clinical settings. Longitudinal studies are needed to evaluate the long-term impact of these technologies on patient outcomes, while interdisciplinary collaboration between healthcare professionals, data scientists, and ethicists is essential for driving innovation in an ethically sound manner. Addressing these areas will advance the application of NLP/NLM technologies and improve patient care in this emerging field.
聊天机器人和自然语言处理(NLP)在放射学中的应用是一个新兴领域,目前其特点是研究数量不断增加。有人提议利用标准化清单和质量控制程序进行一项综合性综述,以纳入科学论文。本综述探讨了这些技术在放射学中的早期发展以及未来可能产生的影响。当前的文献包括15项系统评价,突出了其潜力、机遇、需要改进的领域以及建议。这项综合性综述全面概述了自然语言处理(NLP)和自然语言模型(NLMs),包括聊天机器人,在医疗保健领域的现状。这些技术显示出在改善临床决策、患者参与度以及跨各个医学领域的沟通方面的潜力。然而,重大挑战依然存在,尤其是缺乏标准化协议,这引发了人们对这些工具在不同临床环境中的可靠性和一致性的担忧。没有统一的指导方针,结果的差异可能会阻碍医疗服务提供者更广泛地采用NLP/NLM技术。此外,关于这些技术如何与医疗设备(MDs)交叉的研究有限,这是文献中一个明显的空白。未来的研究必须应对这些挑战,以充分实现NLP/NLM应用在医疗保健领域的潜力。未来关键的研究方向包括制定标准化协议,以确保NLP/NLM工具的一致和安全部署,特别是在放射学等高风险领域。研究这些技术与医疗设备工作流程的整合对于加强临床决策和患者护理至关重要。还必须探讨数据隐私、知情同意和算法偏差等伦理问题,以确保在临床环境中合理使用。需要进行纵向研究来评估这些技术对患者结局的长期影响,而医疗保健专业人员、数据科学家和伦理学家之间的跨学科合作对于以符合伦理的方式推动创新至关重要。解决这些领域的问题将推动NLP/NLM技术的应用,并改善这个新兴领域的患者护理。