Suppr超能文献

早期循环肿瘤DNA动力学作为癌症治疗反应的动态生物标志物。

Early ctDNA kinetics as a dynamic biomarker of cancer treatment response.

作者信息

Li Aaron, Lou Emil, Leder Kevin, Foo Jasmine

机构信息

School of Mathematics, University of Minnesota, Twin Cities, MN, USA.

Masonic Cancer Center, University of Minnesota, Twin Cities, MN, USA.

出版信息

bioRxiv. 2024 Jul 3:2024.07.01.601508. doi: 10.1101/2024.07.01.601508.

Abstract

Circulating tumor DNA assays are promising tools for the prediction of cancer treatment response. Here, we build a framework for the design of ctDNA biomarkers of therapy response that incorporate variations in ctDNA dynamics driven by specific treatment mechanisms. We develop mathematical models of ctDNA kinetics driven by tumor response to several therapy classes, and utilize them to simulate randomized virtual patient cohorts to test candidate biomarkers. Using this approach, we propose specific biomarkers, based on ctDNA longitudinal features, for targeted therapy, chemotherapy and radiation therapy. We evaluate and demonstrate the efficacy of these biomarkers in predicting treatment response within a randomized virtual patient cohort dataset. These biomarkers are based on novel proposals for ctDNA sampling protocols, consisting of frequent sampling within a compact time window surrounding therapy initiation - which we hypothesize to hold valuable prognostic information on longer-term treatment response. This study highlights a need for tailoring ctDNA sampling protocols and interpretation methodology to specific biological mechanisms of therapy response, and it provides a novel modeling and simulation framework for doing so. In addition, it highlights the potential of ctDNA assays for making early, rapid predictions of treatment response within the first days or weeks of treatment, and generates hypotheses for further clinical testing.

摘要

循环肿瘤DNA检测是预测癌症治疗反应的有前景的工具。在此,我们构建了一个用于设计治疗反应的ctDNA生物标志物的框架,该框架纳入了由特定治疗机制驱动的ctDNA动态变化。我们开发了由肿瘤对几种治疗类型的反应驱动的ctDNA动力学数学模型,并利用它们模拟随机虚拟患者队列以测试候选生物标志物。使用这种方法,我们基于ctDNA纵向特征提出了针对靶向治疗、化疗和放射治疗的特定生物标志物。我们在随机虚拟患者队列数据集中评估并证明了这些生物标志物在预测治疗反应方面的有效性。这些生物标志物基于针对ctDNA采样方案的新提议,包括在治疗开始后的紧凑时间窗口内频繁采样——我们假设这能保留有关长期治疗反应的有价值的预后信息。这项研究强调了需要根据治疗反应的特定生物学机制调整ctDNA采样方案和解释方法,并且它提供了一个用于此目的的新颖建模和模拟框架。此外,它突出了ctDNA检测在治疗的头几天或几周内对治疗反应进行早期、快速预测的潜力,并为进一步的临床试验提出了假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec76/11244961/451c5a2424ad/nihpp-2024.07.01.601508v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验