Suppr超能文献

利用卷积神经网络分析微观图像以进行间充质干细胞的高通量筛选。

Utilization of convolutional neural networks to analyze microscopic images for high-throughput screening of mesenchymal stem cells.

作者信息

Liu MuYun, Du XiangXi, Hu JunYuan, Liang Xiao, Wang HaiJun

机构信息

National Engineering Research Center of Foundational Technologies for CGT Industry, Shenzhen, Guangdong, China.

Shenzhen Cellauto Automation Co., Ltd., Shenzhen, Guangdong, China.

出版信息

Open Life Sci. 2024 Jul 10;19(1):20220859. doi: 10.1515/biol-2022-0859. eCollection 2024.

Abstract

This work investigated the high-throughput classification performance of microscopic images of mesenchymal stem cells (MSCs) using a hyperspectral imaging-based separable convolutional neural network (CNN) (H-SCNN) model. Human bone marrow mesenchymal stem cells (hBMSCs) were cultured, and microscopic images were acquired using a fully automated microscope. Flow cytometry (FCT) was employed for functional classification. Subsequently, the H-SCNN model was established. The hyperspectral microscopic (HSM) images were created, and the spatial-spectral combined distance (SSCD) was employed to derive the spatial-spectral neighbors (SSNs) for each pixel in the training set to determine the optimal parameters. Then, a separable CNN (SCNN) was adopted instead of the classic convolutional layer. Additionally, cultured cells were seeded into 96-well plates, and high-functioning hBMSCs were screened using both manual visual inspection (MV group) and the H-SCNN model (H-SCNN group), with each group consisting of 96 samples. FCT served as the benchmark to compare the area under the curve (AUC), 1 score, accuracy (Acc), sensitivity (Sen), specificity (Spe), positive predictive value (PPV), and negative predictive value (NPV) between the manual and model groups. The best classification Acc was 0.862 when using window size of 9 and 12 SSNs. The classification Acc of the SCNN model, ResNet model, and VGGNet model gradually increased with the increase in sample size, reaching 89.56 ± 3.09, 80.61 ± 2.83, and 80.06 ± 3.01%, respectively at the sample size of 100. The corresponding training time for the SCNN model was significantly shorter at 21.32 ± 1.09 min compared to ResNet (36.09 ± 3.11 min) and VGGNet models (34.73 ± 3.72 min) ( < 0.05). Furthermore, the classification AUC, 1 score, Acc, Sen, Spe, PPV, and NPV were all higher in the H-SCNN group, with significantly less time required ( < 0.05). Microscopic images based on the H-SCNN model proved to be effective for the classification assessment of hBMSCs, demonstrating excellent performance in classification Acc and efficiency, enabling its potential to be a powerful tool in future MSCs research.

摘要

本研究利用基于高光谱成像的可分离卷积神经网络(CNN)(H-SCNN)模型,对间充质干细胞(MSCs)的显微图像进行高通量分类性能研究。培养人骨髓间充质干细胞(hBMSCs),并使用全自动显微镜采集显微图像。采用流式细胞术(FCT)进行功能分类。随后,建立H-SCNN模型。创建高光谱显微(HSM)图像,并采用空间光谱组合距离(SSCD)为训练集中的每个像素导出空间光谱邻域(SSN),以确定最佳参数。然后,采用可分离卷积神经网络(SCNN)代替经典卷积层。此外,将培养的细胞接种到96孔板中,分别采用人工目视检查(MV组)和H-SCNN模型(H-SCNN组)筛选高功能hBMSCs,每组包含96个样本。以FCT作为基准,比较人工组和模型组之间的曲线下面积(AUC)、F1分数、准确率(Acc)、灵敏度(Sen)、特异性(Spe)、阳性预测值(PPV)和阴性预测值(NPV)。当窗口大小为9且SSN为12时,最佳分类准确率为0.862。SCNN模型、ResNet模型和VGGNet模型的分类准确率随着样本量的增加而逐渐提高,在样本量为100时分别达到89.56±3.09%、80.61±2.83%和80.06±3.01%。与ResNet(36.09±3.11分钟)和VGGNet模型(34.73±3.72分钟)相比,SCNN模型的相应训练时间明显更短,为21.32±1.09分钟(P<...)。此外,H-SCNN组的分类AUC、F1分数、Acc、Sen、Spe、PPV和NPV均更高,所需时间明显更少(P<...)。基于H-SCNN模型的显微图像被证明对hBMSCs的分类评估有效,在分类准确率和效率方面表现出色,使其有可能成为未来MSCs研究中的有力工具。 (注:原文中部分“<...”处未给出具体比较数值,译文保留原文格式)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eca9/11245879/8ec6779b636b/j_biol-2022-0859-ga001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验