Chouchen Bilel, Mhadhbi Noureddine, Gassoumi Bouzid, Hamdi Intissar, Hadi Hamid, der Maur Matthias Auf, Chouaih Abdelkader, Ladhari Taoufik, Magazù Salvatore, Naïli Houcine, Ayachi Sahbi
Laboratory of Automatic, Electrical Systems and Environment (LAESE), The National Engineering School of Monastir (ENIM), University of Monastir, Av. Ibn El Jazzar Skanes, 5019 Monastir, Tunisia.
Laboratory Physico Chemistry of the Solid State, Department of Chemistry, Faculty of Sciences, University of Sfax, BP 1171, Sfax 3000, Tunisia.
ACS Omega. 2024 Jun 25;9(27):29263-29273. doi: 10.1021/acsomega.4c00190. eCollection 2024 Jul 9.
In this work, we use a combination of dispersion-corrected density functional theory (DFT-D3) and the TiberCAD framework for the first time to investigate a newly designed and synthesized class of (CHN)[CuCl] 2D-type perovskite. The inter- and intra-atomic reorganization in the crystal packing and the type of interaction forming in the active area have been discussed via Hirshfeld surface (HS) analyses. A distinct charge transfer from CuCl to [CHN] is identified by frontier molecular orbitals (FMOs) and density of states (DOS). This newly designed narrow-band gap small-molecule perovskite, with an energy gap ( ) of 2.11 eV, exhibits a higher fill factor (FF = 81.34%), leading to an open-circuit voltage ( ) of 1.738 V and a power conversion efficiency (PCE) approaching ∼10.20%. The interaction between a donor (D) and an acceptor (A) results in a charge transfer complex (CT) through the formation of hydrogen bonds (Cl-H), as revealed by QTAIM analysis. These findings were further supported by 2D-LOL and 3D-ELF analyses by visualizing excess electrons surrounding the acceptor entity. Finally, we performed numerical simulations of solar cell structures using TiberCAD software.
在这项工作中,我们首次结合色散校正密度泛函理论(DFT-D3)和TiberCAD框架,研究了一类新设计合成的(CHN)[CuCl]二维钙钛矿。通过 Hirshfeld 表面(HS)分析讨论了晶体堆积中的原子间和原子内重排以及活性区域形成的相互作用类型。通过前沿分子轨道(FMO)和态密度(DOS)确定了从CuCl到[CHN]的明显电荷转移。这种新设计的窄带隙小分子钙钛矿的能隙( )为2.11 eV,具有更高的填充因子(FF = 81.34%),开路电压( )为1.738 V,功率转换效率(PCE)接近10.20%。QTAIM分析表明,供体(D)和受体(A)之间的相互作用通过形成氢键(Cl-H)导致电荷转移复合物(CT)。通过可视化受体实体周围的多余电子,2D-LOL和3D-ELF分析进一步支持了这些发现。最后,我们使用TiberCAD软件对太阳能电池结构进行了数值模拟。