Brazilian National Institute for Digital Convergence-INCoD, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
Institute of Agricultural Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Minas Gerais, Brazil.
PeerJ. 2024 Jul 9;12:e17686. doi: 10.7717/peerj.17686. eCollection 2024.
In the present investigation, we employ a novel and meticulously structured database assembled by experts, encompassing macrofungi field-collected in Brazil, featuring upwards of 13,894 photographs representing 505 distinct species. The purpose of utilizing this database is twofold: firstly, to furnish training and validation for convolutional neural networks (CNNs) with the capacity for autonomous identification of macrofungal species; secondly, to develop a sophisticated mobile application replete with an advanced user interface. This interface is specifically crafted to acquire images, and, utilizing the image recognition capabilities afforded by the trained CNN, proffer potential identifications for the macrofungal species depicted therein. Such technological advancements democratize access to the Brazilian Funga, thereby enhancing public engagement and knowledge dissemination, and also facilitating contributions from the populace to the expanding body of knowledge concerning the conservation of macrofungal species of Brazil.
在本次研究中,我们采用了由专家精心构建的全新数据库,其中包含了在巴西野外采集的大型真菌,拥有超过 13894 张代表 505 个不同物种的照片。使用该数据库的目的有两个:首先,为具有自主识别大型真菌物种能力的卷积神经网络(CNN)提供训练和验证;其次,开发一个功能齐全的移动应用程序,配备先进的用户界面。该界面专门用于获取图像,并利用训练有素的 CNN 提供的图像识别功能,为图像中描绘的大型真菌物种提供潜在的鉴定。这些技术进步使巴西真菌的获取民主化,从而提高公众的参与度和知识传播,同时也方便公众为巴西大型真菌物种保护的不断扩展的知识库做出贡献。