Suppr超能文献

利用风味组学、靶向筛选及其他方法对阿拉比卡咖啡果壳茶进行综合表征。

Integrated characterization of arabica coffee husk tea using flavoromics, targeted screening, and approaches.

作者信息

Zhao Chunyan, Liu Xiuwei, Tian Hao, Li Zelin

机构信息

College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China.

Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.

出版信息

Food Chem X. 2024 Jun 18;23:101556. doi: 10.1016/j.fochx.2024.101556. eCollection 2024 Oct 30.

Abstract

This study aimed to identify the key volatile compounds in two types of processed arabica coffee husk tea, elucidate their olfactory characteristics, and investigate their antioxidant and anti-inflammatory activities. Sensory evaluation indicated differences between the two groups. A total of 64 and 99 compounds were identified in the C and FC groups, respectively, with 5 identified as key aroma compounds (ROAV≥1). Molecular simulations indicated that four common key aroma compounds were successfully docked with OR1A1 and OR5M3 receptors, forming stable complexes. Furthermore, 14 volatile compounds interacted with 140 targets associated with oxidation and inflammation, linking to 919 gene ontology (GO) terms and 135 kyoto encyclopedia of genes and genomes (KEGG) pathways. Molecular simulations revealed that these volatile components showed antioxidant and anti-inflammatory effects by interacting with core receptors through several forces, including van der Waals, Pi-alkyl, and Pi-cation interactions and hydrogen bonds.

摘要

本研究旨在鉴定两种加工阿拉比卡咖啡果壳茶中的关键挥发性化合物,阐明其嗅觉特征,并研究其抗氧化和抗炎活性。感官评价表明两组之间存在差异。在C组和FC组中分别鉴定出64种和99种化合物,其中5种被鉴定为关键香气化合物(相对气味活度值≥1)。分子模拟表明,四种常见的关键香气化合物成功地与OR1A1和OR5M3受体对接,形成稳定的复合物。此外,14种挥发性化合物与140个与氧化和炎症相关的靶点相互作用,与919个基因本体(GO)术语和135条京都基因与基因组百科全书(KEGG)通路相关联。分子模拟显示,这些挥发性成分通过范德华力、π-烷基相互作用、π-阳离子相互作用和氢键等多种作用力与核心受体相互作用,从而表现出抗氧化和抗炎作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28a6/11245994/3bc76cf771dc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验