Suppr超能文献

采用同切片地面实况细胞标签推导方法训练免疫表型深度学习模型可提高虚拟染色准确性。

Training immunophenotyping deep learning models with the same-section ground truth cell label derivation method improves virtual staining accuracy.

机构信息

School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore, Singapore.

Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.

出版信息

Front Immunol. 2024 Jun 28;15:1404640. doi: 10.3389/fimmu.2024.1404640. eCollection 2024.

Abstract

INTRODUCTION

Deep learning (DL) models predicting biomarker expression in images of hematoxylin and eosin (H&E)-stained tissues can improve access to multi-marker immunophenotyping, crucial for therapeutic monitoring, biomarker discovery, and personalized treatment development. Conventionally, these models are trained on ground truth cell labels derived from IHC-stained tissue sections adjacent to H&E-stained ones, which might be less accurate than labels from the same section. Although many such DL models have been developed, the impact of ground truth cell label derivation methods on their performance has not been studied.

METHODOLOGY

In this study, we assess the impact of cell label derivation on H&E model performance, with CD3 T-cells in lung cancer tissues as a proof-of-concept. We compare two Pix2Pix generative adversarial network (P2P-GAN)-based virtual staining models: one trained with cell labels obtained from the same tissue section as the H&E-stained section (the 'same-section' model) and one trained on cell labels from an adjacent tissue section (the 'serial-section' model).

RESULTS

We show that the same-section model exhibited significantly improved prediction performance compared to the 'serial-section' model. Furthermore, the same-section model outperformed the serial-section model in stratifying lung cancer patients within a public lung cancer cohort based on survival outcomes, demonstrating its potential clinical utility.

DISCUSSION

Collectively, our findings suggest that employing ground truth cell labels obtained through the same-section approach boosts immunophenotyping DL solutions.

摘要

简介

深度学习 (DL) 模型可以预测苏木精和伊红 (H&E) 染色组织图像中的生物标志物表达,从而改善对多标志物免疫表型分析的获取,这对于治疗监测、生物标志物发现和个性化治疗开发至关重要。传统上,这些模型是基于免疫组化染色组织切片中与 H&E 染色切片相邻的细胞标签进行训练的,这些标签可能不如来自同一切片的标签准确。尽管已经开发了许多这样的 DL 模型,但尚未研究细胞标签推导方法对其性能的影响。

方法

在这项研究中,我们评估了细胞标签推导对 H&E 模型性能的影响,以肺癌组织中的 CD3 T 细胞作为概念验证。我们比较了两种基于 Pix2Pix 生成对抗网络 (P2P-GAN) 的虚拟染色模型:一种使用与 H&E 染色切片相同组织切片中的细胞标签进行训练(“同一切片”模型),另一种使用相邻组织切片中的细胞标签进行训练(“连续切片”模型)。

结果

我们表明,同一切片模型的预测性能明显优于“连续切片”模型。此外,同一切片模型在根据生存结果对公共肺癌队列中的肺癌患者进行分层方面优于连续切片模型,表明其具有潜在的临床应用价值。

讨论

总的来说,我们的研究结果表明,采用同一切片方法获取的真实细胞标签可以增强免疫表型 DL 解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d31/11239356/05c455fd5fcb/fimmu-15-1404640-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验