Bai Bijie, Wang Hongda, Li Yuzhu, de Haan Kevin, Colonnese Francesco, Wan Yujie, Zuo Jingyi, Doan Ngan B, Zhang Xiaoran, Zhang Yijie, Li Jingxi, Yang Xilin, Dong Wenjie, Darrow Morgan Angus, Kamangar Elham, Lee Han Sung, Rivenson Yair, Ozcan Aydogan
Electrical and Computer Engineering Department, University of California, Los Angeles, CA 90095, USA.
Bioengineering Department, University of California, Los Angeles 90095, USA.
BME Front. 2022 Oct 25;2022:9786242. doi: 10.34133/2022/9786242. eCollection 2022.
The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.
人表皮生长因子受体2(HER2)生物标志物的免疫组织化学(IHC)染色在乳腺组织分析、临床前研究和诊断决策中广泛应用,指导癌症治疗和发病机制研究。HER2染色需要组织技术人员进行繁琐的组织处理和化学加工,在实验室中通常需要一天时间来准备,这增加了分析时间和相关成本。在此,我们描述了一种基于深度学习的虚拟HER2 IHC染色方法,该方法使用条件生成对抗网络进行训练,以快速将未标记/无标记乳腺组织切片的自发荧光显微镜图像转换为等效的明场显微镜图像,与在同一组织切片上化学进行的标准HER2 IHC染色相匹配。通过定量分析证明了这种虚拟HER2染色框架的有效性,在该分析中,三名获得董事会认证的乳腺病理学家对虚拟染色和免疫组织化学染色的HER2全玻片图像(WSIs)的HER2评分进行了盲法分级,结果显示,通过检查虚拟IHC图像确定的HER2评分与其免疫组织化学染色的对应图像一样准确。由相同诊断人员进行的第二项定量盲法研究进一步表明,虚拟染色的HER2图像在核细节水平、膜清晰度和无染色伪像方面与其免疫组织化学染色的对应图像具有可比的染色质量。这种虚拟HER2染色框架绕过了实验室中昂贵、繁琐且耗时的IHC染色程序,并且可以扩展到其他类型的生物标志物,以加速生命科学和生物医学工作流程中使用的IHC组织染色。