Clayborn Anna L, Rebstock Jaclyn A, Camardella Lauren J, Comeau Elizabeth P, Dabhi Sonali K, Graber Eleanor G, Joyce Thomas H, Maricar Isabelle N, Pinckney Brianna N, Puri Devika, Shekleton Tayli B, Tran Quyen Beatrice T, Harbron Elizabeth J
Department of Chemistry, William & Mary, Williamsburg, Virginia 23187-8795, United States.
ACS Appl Mater Interfaces. 2024 Jul 24;16(29):38478-38489. doi: 10.1021/acsami.4c06749. Epub 2024 Jul 15.
Conjugated polymer nanoparticles (CPNs or Pdots) have become increasingly popular fluorophores for multimodal applications that combine imaging with phototherapeutic effects. Reports of CPNs in photodynamic therapy applications typically focus on their ability to generate singlet oxygen. Alternatively, CPN excited states can interact with oxygen to form superoxide radical anion and a CPN-based hole polaron, both of which can have deleterious effects on fluorescence properties. Here, we demonstrate that CPNs prepared from the common conjugated polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)--co-(1,4-benzo-{2,1',3}-thiadiazole)] (PFBT, also known as F8BT) generate superoxide upon irradiation. We use the same CPNs to detect superoxide by doping them with a superoxide-responsive hydrocyanine dye developed by Murthy and co-workers. Superoxide induces off-to-on fluorescence switching by converting quenching hydrocyanine dyes to fluorescent cyanine dyes that act as fluorescence resonance energy transfer (FRET) acceptors for PFBT chromophores. Amplified FRET from the multichromophoric CPNs yields fluorescence signal intensities that are nearly 50 times greater than when the dye is excited directly or over 100 times greater when signal readout is from the CPN channel. The dye loading level governs the maximum amount of superoxide that induces a change in fluorescence properties and also influences the rate of superoxide generation by furnishing competitive excited state deactivation pathways. These results suggest that CPNs can be used to deliver superoxide in applications in which it is desirable and provide a caution for fluorescence-based CPN applications in which superoxide can damage fluorophores.
共轭聚合物纳米颗粒(CPNs 或 Pdots)已成为越来越受欢迎的荧光团,用于将成像与光治疗效果相结合的多模态应用。关于 CPNs 在光动力治疗应用中的报道通常集中在它们产生单线态氧的能力上。另外,CPN 激发态可以与氧相互作用形成超氧自由基阴离子和基于 CPN 的空穴极化子,这两者都可能对荧光性质产生有害影响。在这里,我们证明由常见的共轭聚合物聚[(9,9 - 二辛基芴 - 2,7 - 二基) - co - (1,4 - 苯并 - {2,1',3} - 噻二唑)](PFBT,也称为 F8BT)制备的 CPNs 在照射时会产生超氧。我们通过用 Murthy 及其同事开发的超氧响应性氢氰酸染料对相同的 CPNs 进行掺杂来检测超氧。超氧通过将淬灭的氢氰酸染料转化为作为 PFBT 发色团的荧光共振能量转移(FRET)受体的荧光花青染料来诱导从关闭到开启的荧光切换。来自多发色团 CPNs 的放大 FRET 产生的荧光信号强度比直接激发染料时高出近 50 倍,或者当信号从 CPN 通道读出时高出 100 倍以上。染料负载水平决定了引起荧光性质变化的超氧的最大量,并且还通过提供竞争性激发态失活途径来影响超氧的产生速率。这些结果表明,CPNs 可用于在需要超氧的应用中递送超氧,并为超氧会损害荧光团的基于荧光的 CPN 应用提供了警示。