Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States.
Department of Chemical, Biological and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States.
ACS Appl Mater Interfaces. 2022 May 11;14(18):20790-20801. doi: 10.1021/acsami.2c02551. Epub 2022 Apr 22.
Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups. Chlorins and bacteriochlorins are ideal dopants due to their high hydrophobicity, which precludes their use as molecular probes in aqueous biological media but on the other hand prevents their leakage when doped into Pdots. Additionally, chlorins and bacteriochlorins have narrow deep red to NIR-emission bands and the wide array of synthetic modifications available for modifying their molecular structure enables tuning their emission predictably and systematically. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements show the chlorin- and bacteriochlorin-doped Pdots to be nearly spherical with an average diameter of 46 ± 12 nm. Efficient energy transfer between PFBT and the doped chlorins or bacteriochlorins decreases the PFBT donor emission to near baseline level and increases the emission of the doped dyes that serve as acceptors. The chlorin- and bacteriochlorin-doped Pdots show narrow emission bands ranging from 640 to 820 nm depending on the doped dye. The paper demonstrates the utility of the systematic chlorin and bacteriochlorin synthesis approach by preparing Pdots of varying emission peak wavelength, utilizing them to visualize multiple targets using wide-field fluorescence microscopy, binding them to secondary antibodies, and determining the binding of secondary antibody-conjugated Pdots to primary antibody-labeled receptors in plant cells. Additionally, the chlorin- and bacteriochlorin-doped Pdots show a blinking behavior that could enable their use in super-resolution imaging methods like STORM.
近红外(NIR)荧光半导体聚合物点(Pdots)由于其出色的化学和光物理性质,在荧光成像方面显示出巨大的潜力。本文描述了 NIR 发射 Pdots 的合成,具有发射峰波长的高度可控性和可调谐性。Pdots 通过掺杂聚[(9,9-二辛基芴-2,7-二基)-共-(1,4-苯并-(2,1',3)-噻二唑)](PFBT)来制备,PFBT 是一种常用的半导体聚合物,作为发光 Pdots 的主体聚合物,用一系列具有不同官能团的叶绿素和细菌叶绿素进行掺杂。叶绿素和细菌叶绿素是理想的掺杂剂,因为它们具有高疏水性,这使得它们不能作为分子探针在水性生物介质中使用,但另一方面,当掺杂到 Pdots 中时,它们可以防止其泄漏。此外,叶绿素和细菌叶绿素具有窄的深红色到近红外发射带,并且可以进行广泛的合成修饰,从而可以对其分子结构进行预测性和系统性的调整。透射电子显微镜(TEM)和动态光散射(DLS)测量表明,叶绿素和细菌叶绿素掺杂的 Pdots 几乎呈球形,平均直径为 46 ± 12nm。PFBT 和掺杂的叶绿素或细菌叶绿素之间的有效能量转移将 PFBT 供体的发射降低到基线水平附近,并增加作为受体的掺杂染料的发射。根据掺杂的染料,叶绿素和细菌叶绿素掺杂的 Pdots 显示出从 640nm 到 820nm 的窄发射带。本文通过制备具有不同发射峰波长的 Pdots,利用它们利用宽场荧光显微镜可视化多个目标,将它们与二级抗体结合,并确定二级抗体缀合的 Pdots 与植物细胞中标记有受体的初级抗体的结合,证明了系统的叶绿素和细菌叶绿素合成方法的实用性。此外,叶绿素和细菌叶绿素掺杂的 Pdots 表现出闪烁行为,这可能使它们能够用于超分辨率成像方法,如 STORM。