Suppr超能文献

基于图注意力的时空网络的传染病动力学建模。

Modeling epidemic dynamics using Graph Attention based Spatial Temporal networks.

机构信息

School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.

School of Information Engineering, Hangzhou Medical College, Hangzhou, Zhejiang, China.

出版信息

PLoS One. 2024 Jul 15;19(7):e0307159. doi: 10.1371/journal.pone.0307159. eCollection 2024.

Abstract

The COVID-19 pandemic and influenza outbreaks have underscored the critical need for predictive models that can effectively integrate spatial and temporal dynamics to enable accurate epidemic forecasting. Traditional time-series analysis approaches have fallen short in capturing the intricate interplay between these factors. Recent advancements have witnessed the incorporation of graph neural networks and machine learning techniques to bridge this gap, enhancing predictive accuracy and providing novel insights into disease spread mechanisms. Notable endeavors include leveraging human mobility data, employing transfer learning, and integrating advanced models such as Transformers and Graph Convolutional Networks (GCNs) to improve forecasting performance across diverse geographies for both influenza and COVID-19. However, these models often face challenges related to data quality, model transferability, and potential overfitting, highlighting the necessity for more adaptable and robust approaches. This paper introduces the Graph Attention-based Spatial Temporal (GAST) model, which employs graph attention networks (GATs) to overcome these limitations by providing a nuanced understanding of epidemic dynamics through a sophisticated spatio-temporal analysis framework. Our contributions include the development and validation of the GAST model, demonstrating its superior forecasting capabilities for influenza and COVID-19 spread, with a particular focus on short-term, daily predictions. The model's application to both influenza and COVID-19 datasets showcases its versatility and potential to inform public health interventions across a range of infectious diseases.

摘要

新冠疫情和流感爆发凸显了对能够有效整合时空动态以实现准确疫情预测的预测模型的迫切需求。传统的时间序列分析方法在捕捉这些因素之间复杂的相互作用方面存在不足。最近的进展见证了图神经网络和机器学习技术的引入,以弥合这一差距,提高预测准确性,并为疾病传播机制提供新的见解。值得注意的努力包括利用人类流动数据、采用迁移学习以及集成先进的模型,如转换器和图卷积网络 (GCN),以提高跨不同地理位置的流感和 COVID-19 的预测性能。然而,这些模型通常面临与数据质量、模型可转移性和潜在的过拟合相关的挑战,这突出了需要更具适应性和稳健性的方法。本文介绍了基于图注意力的时空 (GAST) 模型,该模型通过使用图注意力网络 (GAT) 提供对疫情动态的细致理解,通过复杂的时空分析框架来克服这些限制。我们的贡献包括开发和验证 GAST 模型,展示其在流感和 COVID-19 传播方面的卓越预测能力,特别是在短期、每日预测方面。该模型在流感和 COVID-19 数据集上的应用展示了其通用性和潜力,可以为一系列传染病的公共卫生干预提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e347/11249270/ffc0c145e6b4/pone.0307159.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验