Suppr超能文献

肌少脂与糖代谢受损之间的关联:一种深度学习全身磁共振成像人群表型分析方法。

Association between myosteatosis and impaired glucose metabolism: A deep learning whole-body magnetic resonance imaging population phenotyping approach.

作者信息

Jung Matthias, Rieder Hanna, Reisert Marco, Rospleszcz Susanne, Nattenmueller Johanna, Peters Annette, Schlett Christopher L, Bamberg Fabian, Weiss Jakob

机构信息

Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.

出版信息

J Cachexia Sarcopenia Muscle. 2024 Oct;15(5):1750-1760. doi: 10.1002/jcsm.13527. Epub 2024 Jul 15.

Abstract

BACKGROUND

There is increasing evidence that myosteatosis, which is currently not assessed in clinical routine, plays an important role in risk estimation in individuals with impaired glucose metabolism, as it is associated with the progression of insulin resistance. With advances in artificial intelligence, automated and accurate algorithms have become feasible to fill this gap.

METHODS

In this retrospective study, we developed and tested a fully automated deep learning model using data from two prospective cohort studies (German National Cohort [NAKO] and Cooperative Health Research in the Region of Augsburg [KORA]) to quantify myosteatosis on whole-body T1-weighted Dixon magnetic resonance imaging as (1) intramuscular adipose tissue (IMAT; the current standard) and (2) quantitative skeletal muscle (SM) fat fraction (SMFF). Subsequently, we investigated the two measures for their discrimination of and association with impaired glucose metabolism beyond baseline demographics (age, sex and body mass index [BMI]) and cardiometabolic risk factors (lipid panel, systolic blood pressure, smoking status and alcohol consumption) in asymptomatic individuals from the KORA study. Impaired glucose metabolism was defined as impaired fasting glucose or impaired glucose tolerance (140-200 mg/dL) or prevalent diabetes mellitus.

RESULTS

Model performance was high, with Dice coefficients of ≥0.81 for IMAT and ≥0.91 for SM in the internal (NAKO) and external (KORA) testing sets. In the target population (380 KORA participants: mean age of 53.6 ± 9.2 years, BMI of 28.2 ± 4.9 kg/m, 57.4% male), individuals with impaired glucose metabolism (n = 146; 38.4%) were older and more likely men and showed a higher cardiometabolic risk profile, higher IMAT (4.5 ± 2.2% vs. 3.9 ± 1.7%) and higher SMFF (22.0 ± 4.7% vs. 18.9 ± 3.9%) compared to normoglycaemic controls (all P ≤ 0.005). SMFF showed better discrimination for impaired glucose metabolism than IMAT (area under the receiver operating characteristic curve [AUC] 0.693 vs. 0.582, 95% confidence interval [CI] [0.06-0.16]; P < 0.001) but was not significantly different from BMI (AUC 0.733 vs. 0.693, 95% CI [-0.09 to 0.01]; P = 0.15). In univariable logistic regression, IMAT (odds ratio [OR] = 1.18, 95% CI [1.06-1.32]; P = 0.004) and SMFF (OR = 1.19, 95% CI [1.13-1.26]; P < 0.001) were associated with a higher risk of impaired glucose metabolism. This signal remained robust after multivariable adjustment for baseline demographics and cardiometabolic risk factors for SMFF (OR = 1.10, 95% CI [1.01-1.19]; P = 0.028) but not for IMAT (OR = 1.14, 95% CI [0.97-1.33]; P = 0.11).

CONCLUSIONS

Quantitative SMFF, but not IMAT, is an independent predictor of impaired glucose metabolism, and discrimination is not significantly different from BMI, making it a promising alternative for the currently established approach. Automated methods such as the proposed model may provide a feasible option for opportunistic screening of myosteatosis and, thus, a low-cost personalized risk assessment solution.

摘要

背景

越来越多的证据表明,目前临床常规未评估的肌脂肪变性在糖代谢受损个体的风险评估中起重要作用,因为它与胰岛素抵抗的进展相关。随着人工智能的发展,自动化且准确的算法已变得可行,以填补这一空白。

方法

在这项回顾性研究中,我们使用来自两项前瞻性队列研究(德国国家队列[NAKO]和奥格斯堡地区合作健康研究[KORA])的数据,开发并测试了一个全自动深度学习模型,以在全身T1加权狄克逊磁共振成像上量化肌脂肪变性,方法为:(1)肌内脂肪组织(IMAT;当前标准)和(2)定量骨骼肌(SM)脂肪分数(SMFF)。随后,我们在KORA研究的无症状个体中,研究了这两种测量方法在区分和关联基线人口统计学特征(年龄、性别和体重指数[BMI])及心脏代谢危险因素(血脂谱、收缩压、吸烟状况和饮酒量)之外的糖代谢受损方面的情况。糖代谢受损定义为空腹血糖受损或糖耐量受损(140 - 200mg/dL)或糖尿病患病率。

结果

模型性能较高,在内部(NAKO)和外部(KORA)测试集中,IMAT的Dice系数≥0.81,SM的Dice系数≥0.91。在目标人群(380名KORA参与者:平均年龄53.6±9.2岁,BMI为28.2±4.9kg/m²,57.4%为男性)中,糖代谢受损的个体(n = 146;38.4%)年龄更大,男性比例更高,且心脏代谢风险特征更高,与血糖正常的对照组相比,IMAT更高(4.5±2.2%对3.9±1.7%),SMFF更高(22.0±4.7%对18.9±3.9%)(所有P≤0.005)。SMFF对糖代谢受损的区分能力优于IMAT(受试者工作特征曲线下面积[AUC]为0.693对0.582,95%置信区间[CI][0.06 - 0.16];P<0.001),但与BMI无显著差异(AUC为0.733对0.693,95%CI[-0.09至0.01];P = 0.15)。在单变量逻辑回归中,IMAT(优势比[OR]=1.18,95%CI[1.06 - 1.32];P = 0.004)和SMFF(OR = 1.19,95%CI[1.1, /13 - 1.26];P<0.001)与糖代谢受损风险较高相关。在对基线人口统计学特征和心脏代谢危险因素进行多变量调整后,SMFF的这一信号仍然显著(OR = 1.10,95%CI[1.01 - 1.19];P = 0.028),但IMAT则不然(OR = 1.14,95%CI[0.97 - 1.33];P = 0.11)。

结论

定量SMFF而非IMAT是糖代谢受损的独立预测指标,其区分能力与BMI无显著差异,使其成为当前既定方法的一个有前景的替代方案。像所提出的模型这样的自动化方法可能为机会性筛查肌脂肪变性提供一个可行的选择,从而提供一种低成本的个性化风险评估解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e34a/11446675/5e41ab8af478/JCSM-15-1750-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验