Park Jinsub, Je Yugyeong, Kim Joonho, Park Je Myoung, Jung Joong-Eon, Cheong Hyeonsik, Lee Sang Wook, Kim Kwanpyo
Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea.
Department of Physics, Ewha Womans University, Seoul, 03760, Republic of Korea.
Nano Converg. 2024 Jul 15;11(1):29. doi: 10.1186/s40580-024-00436-3.
γ-GeSe is a newly identified polymorph among group-IV monochalcogenides, characterized by a distinctive interatomic bonding configuration. Despite its promising applications in electrical and thermal domains, the experimental verification of its mechanical and thermal properties remains unreported. Here, we experimentally characterize the in-plane Young's modulus (E) and thermal conductivity ([Formula: see text]) of γ-GeSe. The mechanical vibrational modes of freestanding γ-GeSe flakes are measured using optical interferometry. Nano-indentation via atomic force microscopy is also conducted to induce mechanical deformation and to extract the E. Comparison with finite-element simulations reveals that the E is 97.3[Formula: see text]7.5 GPa as determined by optical interferometry and 109.4[Formula: see text]13.5 GPa as established through the nano-indentation method. Additionally, optothermal Raman spectroscopy reveals that γ-GeSe has a lattice thermal conductivity of 2.3 [Formula: see text] 0.4 WmK and a total thermal conductivity of 7.5 [Formula: see text] 0.4 WmK in the in-plane direction at room temperature. The notably high [Formula: see text] ratio in γ-GeSe, compared to other layered materials, underscores its distinctive structural and dynamic characteristics.
γ-锗硒是新发现的IV族单硫属化物中的一种多晶型物,其特征在于独特的原子间键合构型。尽管它在电学和热学领域有广阔的应用前景,但其力学和热学性质的实验验证仍未见报道。在此,我们通过实验表征了γ-锗硒的面内杨氏模量(E)和热导率([公式:见原文])。使用光学干涉测量法测量了独立的γ-锗硒薄片的机械振动模式。还通过原子力显微镜进行纳米压痕以引起机械变形并提取E。与有限元模拟的比较表明,通过光学干涉测量法确定的E为97.3[公式:见原文]7.5吉帕,通过纳米压痕法确定的E为109.4[公式:见原文]13.5吉帕。此外,光热拉曼光谱表明,γ-锗硒在室温下面内方向的晶格热导率为2.3[公式:见原文]0.4瓦每米开尔文,总热导率为7.5[公式:见原文]0.4瓦每米开尔文。与其他层状材料相比,γ-锗硒中显著高的[公式:见原文]比率突出了其独特的结构和动态特性。