University of Foggia, Foggia, Puglia, Italia.
University of Bari Aldo Moro, Bari, Puglia, Italia.
BMC Public Health. 2024 Jul 15;24(1):1880. doi: 10.1186/s12889-024-19369-x.
The following article presents an analysis of the impact of the Environmental, Social and Governance-ESG determinants on Hospital Emigration to Another Region-HEAR in the Italian regions in the period 2004-2021. The data are analysed using Panel Data with Random Effects, Panel Data with Fixed Effects, Pooled Ordinary Least Squares-OLS, Weighted Least Squares-WLS, and Dynamic Panel at 1 Stage. Furthermore, to control endogeneity we also created instrumental variable models for each component of the ESG model. Results show that HEAR is negatively associated to the E, S and G component within the ESG model. The data were subjected to clustering with a k-Means algorithm optimized with the Silhouette coefficient. The optimal clustering with k=2 is compared to the sub-optimal cluster with k=3. The results suggest a negative relationship between the resident population and hospital emigration at regional level. Finally, a prediction is proposed with machine learning algorithms classified based on statistical performance. The results show that the Artificial Neural Network-ANN algorithm is the best predictor. The ANN predictions are critically analyzed in light of health economic policy directions.
本文分析了环境、社会和治理(ESG)决定因素对意大利地区 2004-2021 年期间医院向另一个地区迁移(HEAR)的影响。使用面板数据的随机效应、面板数据的固定效应、普通最小二乘法(OLS)的汇总、加权最小二乘法(WLS)和一阶动态面板进行数据分析。此外,为了控制内生性,我们还为 ESG 模型的每个组成部分创建了工具变量模型。结果表明,HEAR 与 ESG 模型中的 E、S 和 G 组成部分呈负相关。对数据进行了聚类分析,使用轮廓系数优化了 k-均值算法。将 k=2 的最优聚类与 k=3 的次优聚类进行了比较。结果表明,居民人口与区域层面的医院迁移之间存在负相关关系。最后,提出了基于机器学习算法的预测,并根据统计性能进行了分类。结果表明,人工神经网络(ANN)算法是最佳预测器。根据卫生经济政策方向,对 ANN 预测进行了批判性分析。