Suppr超能文献

内质网应激通过调节免疫促进肝细胞癌:基于人工神经网络和单细胞测序的研究。

Endoplasmic reticulum stress promotes hepatocellular carcinoma by modulating immunity: a study based on artificial neural networks and single-cell sequencing.

机构信息

Department of Emergency, The Eighth Affiliated Hospital of Sun Yat- sen University, Shenzhen, 518003, Guangdong, P. R. China.

The First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi, P. R. China.

出版信息

J Transl Med. 2024 Jul 15;22(1):658. doi: 10.1186/s12967-024-05460-9.

Abstract

INTRODUCTION

Hepatocellular carcinoma (HCC) is characterized by the complex pathogenesis, limited therapeutic methods, and poor prognosis. Endoplasmic reticulum stress (ERS) plays an important role in the development of HCC, therefore, we still need further study of molecular mechanism of HCC and ERS for early diagnosis and promising treatment targets.

METHOD

The GEO datasets (GSE25097, GSE62232, and GSE65372) were integrated to identify differentially expressed genes related to HCC (ERSRGs). Random Forest (RF) and Support Vector Machine (SVM) machine learning techniques were applied to screen ERSRGs associated with endoplasmic reticulum stress, and an artificial neural network (ANN) diagnostic prediction model was constructed. The ESTIMATE algorithm was utilized to analyze the correlation between ERSRGs and the immune microenvironment. The potential therapeutic agents for ERSRGs were explored using the Drug Signature Database (DSigDB). The immunological landscape of the ERSRGs central gene PPP1R16A was assessed through single-cell sequencing and cell communication, and its biological function was validated using cytological experiments.

RESULTS

An ANN related to the ERS model was constructed based on SRPX, THBS4, CTH, PPP1R16A, CLGN, and THBS1. The area under the curve (AUC) of the model in the training set was 0.979, and the AUC values in three validation sets were 0.958, 0.936, and 0.970, respectively, indicating high reliability and effectiveness. Spearman correlation analysis suggests that the expression levels of ERSRGs are significantly correlated with immune cell infiltration and immune-related pathways, indicating their potential as important targets for immunotherapy. Mometasone was predicted to be the most promising treatment drug based on its highest binding score. Among the six ERSRGs, PPP1R16A had the highest mutation rate, predominantly copy number mutations, which may be the core gene of the ERSRGs model. Single-cell analysis and cell communication indicated that PPP1R16A is predominantly distributed in liver malignant parenchymal cells and may reshape the tumor microenvironment by enhancing macrophage migration inhibitory factor (MIF)/CD74 + CXCR4 signaling pathways. Functional experiments revealed that after siRNA knockdown, the expression of PPP1R16A was downregulated, which inhibited the proliferation, migration, and invasion capabilities of HCCLM3 and Hep3B cells in vitro.

CONCLUSION

The consensus of various machine learning algorithms and artificial intelligence neural networks has established a novel predictive model for the diagnosis of liver cancer associated with ERS. This study offers a new direction for the diagnosis and treatment of HCC.

摘要

简介

肝细胞癌 (HCC) 的发病机制复杂,治疗方法有限,预后较差。内质网应激 (ERS) 在 HCC 的发展中起着重要作用,因此,我们仍需要进一步研究 HCC 和 ERS 的分子机制,以实现早期诊断和有前途的治疗靶点。

方法

整合 GEO 数据集(GSE25097、GSE62232 和 GSE65372),以确定与 HCC(ERSRGs)相关的差异表达基因。随机森林 (RF) 和支持向量机 (SVM) 机器学习技术被应用于筛选与内质网应激相关的 ERSRGs,并构建人工神经网络 (ANN) 诊断预测模型。利用 ESTIMATE 算法分析 ERSRGs 与免疫微环境的相关性。使用药物特征数据库 (DSigDB) 探索 ERSRGs 的潜在治疗药物。通过单细胞测序和细胞通讯评估 ERSRGs 核心基因 PPP1R16A 的免疫图谱,并通过细胞学实验验证其生物学功能。

结果

基于 SRPX、THBS4、CTH、PPP1R16A、CLGN 和 THBS1 构建了一个与 ERS 模型相关的 ANN。该模型在训练集中的曲线下面积 (AUC) 为 0.979,在三个验证集中的 AUC 值分别为 0.958、0.936 和 0.970,表明其具有较高的可靠性和有效性。Spearman 相关性分析表明,ERSRGs 的表达水平与免疫细胞浸润和免疫相关途径显著相关,这表明它们可能是免疫治疗的重要靶点。基于最高结合评分,预测莫米松是最有前途的治疗药物。在这 6 个 ERSRGs 中,PPP1R16A 的突变率最高,主要是拷贝数突变,这可能是 ERSRGs 模型的核心基因。单细胞分析和细胞通讯表明,PPP1R16A 主要分布在肝恶性实质细胞中,通过增强巨噬细胞迁移抑制因子 (MIF)/CD74+CXCR4 信号通路可能重塑肿瘤微环境。功能实验表明,siRNA 敲低后,PPP1R16A 的表达下调,体外抑制 HCCLM3 和 Hep3B 细胞的增殖、迁移和侵袭能力。

结论

多种机器学习算法和人工智能神经网络的共识建立了一个新的与 ERS 相关的肝癌诊断预测模型。本研究为 HCC 的诊断和治疗提供了新的方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4d5/11247783/9bfe2a8a3772/12967_2024_5460_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验