Suppr超能文献

多机构放射治疗癌症患者死亡率的人工神经网络预测

Artificial Neural Network Prediction of Mortality in Cancer Patients Presenting for Radiation Therapy at a Multisite Institution.

作者信息

Shahrabani Elan, Shen Michael, Wuu Yen-Ruh, Potters Louis, Parashar Bhupesh

机构信息

Department of Radiation Oncology, Northwell/Donald and Barbara Zucker School of Medicine at Hofstra, New Hyde Park, USA.

出版信息

Cureus. 2024 Jul 14;16(7):e64536. doi: 10.7759/cureus.64536. eCollection 2024 Jul.

Abstract

INTRODUCTION

For many decades, the management of cancer has utilized radiation therapy, which continues to evolve with technology to improve patient outcomes. However, despite the standardization of treatment plans and the establishment of best clinical practices based on prospective, randomized trials and adherence to National Comprehensive Cancer Network (NCCN) guidelines, the outcomes from radiation therapy are highly variable and dependent on a number of factors, including patient demographics, tumor characteristics/histology, and treatment parameters. In this study, we attempt to use available patient data and treatment parameters at the time of radiation therapy to predict future outcomes using artificial intelligence (AI).

METHODS

Six thousand five hundred ninety-five cases of patients who completed radiation treatment were selected retrospectively and used to train artificial neural networks (ANNs) and baseline models (i.e., logistic regression, random forest, support vector machines [SVMs], gradient boosting [XGBoost]) for binary classification of mortality at multiple time points ranging from six months to five years post-treatment. A hyperparameter grid search was used to identify the optimal network architecture for each time point, using sensitivity as the primary outcome metric.

RESULTS

The median age was 75 years (range: 2-102 years). There were 63.8% females and 36.1% males. The results indicate that ANNs were able to successfully perform binary mortality prediction with an accuracy greater than random chance and greater sensitivity than baseline models used. The best-performing algorithm was the ANN, which achieved a sensitivity of 83.00% ± 4.89% for five-year mortality.

CONCLUSION

The neural network was able to achieve higher sensitivity than Logistic Regression, SVM Random Forest, and XGBoost across all output target variables, demonstrating the utility of a neural network model for mortality prediction on the provided dataset.

摘要

引言

几十年来,癌症治疗一直采用放射治疗,并且随着技术不断发展以改善患者预后。然而,尽管治疗方案实现了标准化,且基于前瞻性随机试验建立了最佳临床实践并遵循美国国立综合癌症网络(NCCN)指南,但放射治疗的结果仍存在很大差异,并且取决于许多因素,包括患者人口统计学特征、肿瘤特征/组织学以及治疗参数。在本研究中,我们尝试利用放射治疗时可用的患者数据和治疗参数,通过人工智能(AI)预测未来结果。

方法

回顾性选取6595例完成放射治疗的患者病例,用于训练人工神经网络(ANN)和基线模型(即逻辑回归、随机森林、支持向量机[SVM]、梯度提升[XGBoost]),以对治疗后6个月至5年多个时间点的死亡率进行二元分类。使用超参数网格搜索来确定每个时间点的最佳网络架构,将敏感性作为主要结果指标。

结果

中位年龄为75岁(范围:2 - 102岁)。女性占63.8%,男性占36.1%。结果表明,人工神经网络能够成功进行二元死亡率预测,其准确率高于随机概率,且敏感性高于所使用的基线模型。表现最佳的算法是人工神经网络,其对五年死亡率的敏感性达到83.00%±4.89%。

结论

在所有输出目标变量上,神经网络均能实现比逻辑回归、支持向量机、随机森林和梯度提升更高的敏感性,这表明神经网络模型在提供的数据集上用于死亡率预测具有实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b63/11247042/a4994662f7a8/cureus-0016-00000064536-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验