Yaseen Waleed, Xie Meng, Yusuf Bashir Adegbemiga, Meng Suci, Khan Iltaf, Xie Jimin, Xu Yuanguo
School of Materials Science & Engineering, School of Chemistry and Chemical Engineering, School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China.
School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, P. R. China.
Small. 2024 Nov;20(44):e2403971. doi: 10.1002/smll.202403971. Epub 2024 Jul 16.
Developing low-cost and industrially viable electrode materials for efficient water-splitting performance and constructing intrinsically active materials with abundant active sites is still challenging. In this study, a self-supported porous network Ni(OH)-CeO heterostructure layer on a FeOOH-modified Ni-mesh (NiCe/Fe@NM) electrode is successfully prepared by a facile, scalable two-electrode electrodeposition strategy for overall alkaline water splitting. The optimized NiCe/Fe@NM catalyst reaches a current density of 100 mA cm at an overpotential of 163 and 262 mV for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively, in 1.0 m KOH with excellent stability. Additionally, NiCe/Fe@NM demonstrates exceptional HER performance in alkaline seawater, requiring only 148 mV overpotential at 100 mA cm. Under real water splitting conditions, NiCe/Fe@NM requires only 1.701 V to achieve 100 mA cm with robust stability over 1000 h in an alkaline medium. The remarkable water-splitting performance and stability of the NiCe/Fe@NM catalyst result from a synergistic combination of factors, including well-optimized surface and electronic structures facilitated by an optimal Ce ratio, rapid reaction kinetics, a superhydrophilic/superaerophobic interface, and enhanced intrinsic catalytic activity. This study presents a simple two-electrode electrodeposition method for the scalable production of self-supported electrocatalysts, paving the way for their practical application in industrial water-splitting processes.
开发具有高效析水性能的低成本且可在工业上应用的电极材料,以及构建具有丰富活性位点的本征活性材料,仍然具有挑战性。在本研究中,通过一种简便、可扩展的双电极电沉积策略,成功地在FeOOH修饰的镍网(NiCe/Fe@NM)电极上制备了自支撑多孔网络Ni(OH)-CeO异质结构层,用于整体碱性水分解。优化后的NiCe/Fe@NM催化剂在1.0 m KOH中,对于析氢反应(HER)和析氧反应(OER),分别在过电位为163和262 mV时达到100 mA cm的电流密度,具有出色的稳定性。此外,NiCe/Fe@NM在碱性海水中表现出优异的HER性能,在100 mA cm时仅需148 mV的过电位。在实际水分解条件下,NiCe/Fe@NM在碱性介质中仅需1.701 V即可达到100 mA cm,并在1000 h以上具有强大的稳定性。NiCe/Fe@NM催化剂卓越的析水性能和稳定性源于多种因素的协同组合,包括由最佳Ce比例促进的优化表面和电子结构、快速的反应动力学、超亲水/超疏气界面以及增强的本征催化活性。本研究提出了一种简单的双电极电沉积方法,用于可扩展生产自支撑电催化剂,为其在工业水分解过程中的实际应用铺平了道路。