IEEE J Biomed Health Inform. 2024 Oct;28(10):6259-6267. doi: 10.1109/JBHI.2024.3429128. Epub 2024 Oct 3.
Numerous scientific studies have found a link between diverse microorganisms in the human body and complex human diseases. Because traditional experimental approaches are time-consuming and expensive, using computational methods to identify microbes correlated with diseases is critical. In this paper, a new microbe-disease association prediction model is proposed that combines a multi-view multi-modal network and a multi-scale feature fusion mechanism, called MHOGAT. Firstly, a microbe-disease association network and multiple similarity views are constructed based on multi-source information. Then, consider that neighbor information from disparate orders might be more adept at learning node representations. Consequently, the higher-order graph attention network (HOGAT) is devised to aggregate neighbor information from disparate orders to extract microbe and disease features from different networks and views. Given that the embedding features of microbe and disease from different views possess varying importance, a multi-scale feature fusion mechanism is employed to learn their interaction information, thereby generating the final feature of microbes and diseases. Finally, an inner product decoder is used to reconstruct the microbe-disease association matrix. Compared with five state-of-the-art methods on the HMDAD and Disbiome datasets, the results of 5-fold cross-validations show that MHOGAT achieves the best performance. Furthermore, case studies on asthma and obesity confirm the effectiveness of MHOGAT in identifying potential disease-related microbes.
大量科学研究发现,人体中的多种微生物与复杂的人类疾病之间存在关联。由于传统的实验方法既耗时又昂贵,因此使用计算方法来识别与疾病相关的微生物至关重要。在本文中,我们提出了一种新的微生物-疾病关联预测模型,该模型结合了多视图多模态网络和多尺度特征融合机制,称为 MHOGAT。首先,基于多源信息构建了微生物-疾病关联网络和多个相似视图。然后,考虑到来自不同阶数的邻居信息可能更擅长学习节点表示。因此,设计了高阶图注意网络(HOGAT)来聚合来自不同阶数的邻居信息,以从不同网络和视图中提取微生物和疾病特征。鉴于来自不同视图的微生物和疾病的嵌入特征具有不同的重要性,采用多尺度特征融合机制来学习它们的交互信息,从而生成微生物和疾病的最终特征。最后,使用内积解码器来重构微生物-疾病关联矩阵。在 HMDAD 和 Disbiome 数据集上,与五种最先进的方法相比,5 折交叉验证的结果表明 MHOGAT 取得了最佳性能。此外,哮喘和肥胖症的案例研究证实了 MHOGAT 识别潜在疾病相关微生物的有效性。