IEEE J Biomed Health Inform. 2024 Sep;28(9):5055-5066. doi: 10.1109/JBHI.2024.3428512. Epub 2024 Sep 5.
Ubiquitous sensing has been widely applied in smart healthcare, providing an opportunity for intelligent heart sound auscultation. However, smart devices contain sensitive information, raising user privacy concerns. To this end, federated learning (FL) has been adopted as an effective solution, enabling decentralised learning without data sharing, thus preserving data privacy in the Internet of Health Things (IoHT). Nevertheless, traditional FL requires the same architectural models to be trained across local clients and global servers, leading to a lack of model heterogeneity and client personalisation. For medical institutions with private data clients, this study proposes Fed-MStacking, a heterogeneous FL framework that incorporates a stacking ensemble learning strategy to support clients in building their own models. The secondary objective of this study is to address scenarios involving local clients with data characterised by inconsistent labelling. Specifically, the local client contains only one case type, and the data cannot be shared within or outside the institution. To train a global multi-class classifier, we aggregate missing class information from all clients at each institution and build meta-data, which then participates in FL training via a meta-learner. We apply the proposed framework to a multi-institutional heart sound database. The experiments utilise random forests (RFs), feedforward neural networks (FNNs), and convolutional neural networks (CNNs) as base classifiers. The results show that the heterogeneous stacking of local models performs better compared to homogeneous stacking.
无处不在的感知已广泛应用于智能医疗保健领域,为智能心音听诊提供了机会。然而,智能设备包含敏感信息,引起了用户对隐私的担忧。为此,联邦学习(FL)已被采用作为一种有效的解决方案,实现了去中心化学习而无需数据共享,从而保护了医疗物联网(IoHT)中的数据隐私。然而,传统的 FL 需要在本地客户端和全局服务器上使用相同的架构模型进行训练,导致模型异构性和客户端个性化不足。对于拥有私有数据客户端的医疗机构,本研究提出了 Fed-MStacking,这是一个异构的 FL 框架,它结合了堆叠集成学习策略,以支持客户端构建自己的模型。本研究的次要目标是解决涉及具有不一致标签数据的本地客户端的场景。具体来说,本地客户端只包含一种病例类型,且数据不能在机构内部或外部共享。为了训练一个全局多类分类器,我们在每个机构中从所有客户端聚合缺失类别的信息,并构建元数据,然后通过元学习器参与 FL 训练。我们将所提出的框架应用于多机构心音数据库。实验中使用随机森林(RFs)、前馈神经网络(FNNs)和卷积神经网络(CNNs)作为基分类器。结果表明,与同质堆叠相比,本地模型的异质堆叠表现更好。