Suppr超能文献

学习用于未配对真实世界图像超分辨率和降尺度的多对多映射

Learning Many-to-Many Mapping for Unpaired Real-World Image Super-Resolution and Downscaling.

作者信息

Sun Wanjie, Chen Zhenzhong

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):9874-9889. doi: 10.1109/TPAMI.2024.3428546. Epub 2024 Nov 6.

Abstract

Learning based single image super-resolution (SISR) for real-world images has been an active research topic yet a challenging task, due to the lack of paired low-resolution (LR) and high-resolution (HR) training images. Most of the existing unsupervised real-world SISR methods adopt a two-stage training strategy by synthesizing realistic LR images from their HR counterparts first, then training the super-resolution (SR) models in a supervised manner. However, the training of image degradation and SR models in this strategy are separate, ignoring the inherent mutual dependency between downscaling and its inverse upscaling process. Additionally, the ill-posed nature of image degradation is not fully considered. In this paper, we propose an image downscaling and SR model dubbed as SDFlow, which simultaneously learns a bidirectional many-to-many mapping between real-world LR and HR images unsupervisedly. The main idea of SDFlow is to decouple image content and degradation information in the latent space, where content information distribution of LR and HR images is matched in a common latent space. Degradation information of the LR images and the high-frequency information of the HR images are fitted to an easy-to-sample conditional distribution. Experimental results on real-world image SR datasets indicate that SDFlow can generate diverse realistic LR and SR images both quantitatively and qualitatively.

摘要

对于真实世界图像,基于学习的单图像超分辨率(SISR)一直是一个活跃的研究课题,但由于缺乏低分辨率(LR)和高分辨率(HR)配对训练图像,它仍然是一项具有挑战性的任务。现有的大多数无监督真实世界SISR方法采用两阶段训练策略,首先从高分辨率图像合成逼真的低分辨率图像,然后以监督方式训练超分辨率(SR)模型。然而,该策略中图像退化和SR模型的训练是分开的,忽略了下采样及其逆上采样过程之间固有的相互依赖性。此外,图像退化的不适定性质没有得到充分考虑。在本文中,我们提出了一种图像下采样和SR模型,称为SDFlow,它无监督地同时学习真实世界低分辨率和高分辨率图像之间的双向多对多映射。SDFlow的主要思想是在潜在空间中解耦图像内容和退化信息,其中低分辨率和高分辨率图像的内容信息分布在一个公共潜在空间中匹配。低分辨率图像的退化信息和高分辨率图像的高频信息被拟合到一个易于采样的条件分布中。在真实世界图像超分辨率数据集上的实验结果表明,SDFlow在定量和定性方面都可以生成多样的逼真的低分辨率和超分辨率图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验