Zhou Hexiang, Huang Yawen, Li Yuexiang, Zhou Yi, Zheng Yefeng
IEEE J Biomed Health Inform. 2023 Mar;27(3):1409-1418. doi: 10.1109/JBHI.2022.3232511. Epub 2023 Mar 7.
High-resolution medical images can be effectively used for clinical diagnosis. However, the acquisition of high-resolution images is difficult and often limited by medical instruments. Super-resolution (SR) methods provide a solution, where high-resolution (HR) images can be reconstructed from low-resolution (LR) ones. Most of existing deep neural networks for 3D SR medical images trained in a non-blind process, where LR images are directly degraded from HR data via a pre-determined downscale method. Such approaches rely heavily on the assumed degradation model, resulting in inevitable deviations in real clinical practice. Blind super-resolution, as a more attractive research line for this field, aims to generate HR images from LR inputs containing unknown degradation. Towards generalizing SR models for diverse types of degradation, we propose a robust blind SR of 3D medical images in an unsupervised manner with domain correction and upscaling treatment. First, a CycleGAN-based architecture is implemented to generate the LR data from the source domain to the target one for domain correction. Then, an upscaling network is learned via pre-determined HR-LR couples for reconstruction. The proposed framework is able to automatically learn noisy and blurry correction kernels for unpaired 3D SR magnetic resonance images (MRI). Our method achieves better and more robust performances in reconstruction of HR images from LR MRI with multiple unknown degradation processes, and show its superiority to other state-of-the-art supervised models and cycle-consistency based methods, especially in severe distortion cases.
高分辨率医学图像可有效地用于临床诊断。然而,获取高分辨率图像很困难,并且常常受到医疗仪器的限制。超分辨率(SR)方法提供了一种解决方案,即可以从低分辨率(LR)图像重建高分辨率(HR)图像。现有的大多数用于3D SR医学图像的深度神经网络都是在非盲过程中训练的,在这种过程中,LR图像通过预先确定的下采样方法直接从HR数据退化而来。此类方法严重依赖于假定的退化模型,在实际临床实践中会导致不可避免的偏差。盲超分辨率作为该领域更具吸引力的研究方向,旨在从包含未知退化的LR输入中生成HR图像。为了将SR模型推广到各种类型的退化,我们提出了一种用于3D医学图像的鲁棒盲SR方法,该方法以无监督方式进行域校正和放大处理。首先,实现基于CycleGAN的架构,从源域生成LR数据到目标域进行域校正。然后,通过预先确定的HR-LR对学习一个放大网络进行重建。所提出的框架能够自动为未配对的3D SR磁共振图像(MRI)学习噪声和模糊校正内核。我们的方法在从具有多个未知退化过程的LR MRI重建HR图像方面取得了更好、更鲁棒的性能,并显示出其优于其他最新的监督模型和基于循环一致性的方法,尤其是在严重失真的情况下。