Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
Proc Natl Acad Sci U S A. 2024 Jul 23;121(30):e2403739121. doi: 10.1073/pnas.2403739121. Epub 2024 Jul 16.
Natural kinesin motors are tethered to their cargoes via short C-terminal or N-terminal linkers, whose docking against the core motor domain generates directional force. It remains unclear whether linker docking is the only process contributing directional force or whether linker docking is coupled to and amplifies an underlying, more fundamental force-generating mechanical cycle of the kinesin motor domain. Here, we show that kinesin motor domains tethered via double-stranded DNAs (dsDNAs) attached to surface loops drive robust microtubule (MT) gliding. Tethering using dsDNA attached to surface loops disconnects the C-terminal neck-linker and the N-terminal cover strand so that their dock-undock cycle cannot exert force. The most effective attachment positions for the dsDNA tether are loop 2 or loop 10, which lie closest to the MT plus and minus ends, respectively. In three cases, we observed minus-end-directed motility. Our findings demonstrate an underlying, potentially ancient, force-generating core mechanical action of the kinesin motor domain, which drives, and is amplified by, linker docking.
天然的驱动蛋白通过短的 C 端或 N 端连接体与货物连接,其对接核心马达结构域产生定向力。目前尚不清楚连接体对接是否是产生定向力的唯一过程,还是连接体对接与驱动蛋白马达结构域的潜在更基本的力产生机械循环偶联并放大。在这里,我们表明,通过附着在表面环上的双链 DNA(dsDNA)连接的驱动蛋白结构域可以有效地推动微管(MT)滑行。使用附着在表面环上的 dsDNA 进行连接会断开 C 端颈连接和 N 端覆盖链,从而使它们的对接-脱接循环无法产生力。dsDNA 连接的最有效附着位置是环 2 或环 10,它们分别最接近 MT 的正负端。在三种情况下,我们观察到负向运动。我们的发现证明了驱动蛋白马达结构域的潜在、古老的基本力产生核心机械作用,它驱动并由连接体对接放大。