Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy.
Department of Big Data Intelligence, Advanced Institute of Big Data, Beijing, 100195, China.
Sci Rep. 2024 Jul 16;14(1):16443. doi: 10.1038/s41598-024-67080-z.
To avoid exploitation by defectors, people can use past experiences with others when deciding to cooperate or not ('private information'). Alternatively, people can derive others' reputation from 'public' information provided by individuals within the social network. However, public information may be aligned or misaligned with one's own private experiences and different individuals, such as 'friends' and 'enemies', may have different opinions about the reputation of others. Using evolutionary agent-based simulations, we examine how cooperation and social organization is shaped when agents (1) prioritize private or public information about others' reputation, and (2) integrate others' opinions using a friend-focused or a friend-and-enemy focused heuristic (relying on reputation information from only friends or also enemies, respectively). When agents prioritize public information and rely on friend-and-enemy heuristics, we observe polarization cycles marked by high cooperation, invasion by defectors, and subsequent population fragmentation. Prioritizing private information diminishes polarization and defector invasions, but also results in limited cooperation. Only when using friend-focused heuristics and following past experiences or the recommendation of friends create prosperous and stable populations based on cooperation. These results show how combining one's own experiences and the opinions of friends can lead to stable and large-scale cooperation and highlight the important role of following the advice of friends in the evolution of group cooperation.
为了避免被叛徒利用,人们在决定是否合作时可以利用过去与他人打交道的经验(“私人信息”)。或者,人们可以从社交网络中的个人提供的“公共”信息中推断出他人的声誉。然而,公共信息可能与自己的私人经验一致或不一致,不同的个体,如“朋友”和“敌人”,可能对他人的声誉有不同的看法。我们使用基于进化的代理模拟来研究当代理(1)优先考虑他人声誉的私人或公共信息,以及(2)使用基于朋友的或基于朋友和敌人的启发式(分别仅依赖朋友或敌人的声誉信息)整合他人的意见时,合作和社会组织是如何形成的。当代理优先考虑公共信息并依赖于朋友和敌人启发式时,我们观察到极化循环,其特征是高合作、叛徒入侵和随后的人口碎片化。优先考虑私人信息会减少极化和叛徒入侵,但也会导致合作受限。只有当使用基于朋友的启发式并遵循过去的经验或朋友的建议时,才能基于合作建立繁荣和稳定的群体。这些结果表明,如何将自己的经验和朋友的意见相结合,可以导致稳定和大规模的合作,并强调了在群体合作的进化中遵循朋友建议的重要作用。