Wu Jie, Liu Leyi, Du Weidong, Lu Yunyang, Li Runze, Wang Chao, Xu Duoling, Ku Weili, Li Shujun, Hou Wentao, Yu Dongsheng, Zhao Wei
Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China.
Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510050, China.
J Nanobiotechnology. 2024 Jul 17;22(1):422. doi: 10.1186/s12951-024-02714-y.
Vascularization plays a significant role in promoting the expedited process of bone regeneration while also enhancing the stability and viability of artificial bone implants. Although titanium alloy scaffolds were designed to mimic the porous structure of human bone tissues to facilitate vascularization in bone repair, their biological inertness restricted their broader utilization. The unique attribute of Metal-organic framework (MOF) MIL-53(Fe), known as "breathing", can facilitate the efficient adsorption of extracellular matrix proteins and thus provide the possibility for efficient interaction between scaffolds and cell adhesion molecules, which helps improve the bioactivity of the titanium alloy scaffolds. In this study, MIL-53(Fe) was synthesized in situ on the scaffold after hydrothermal treatment. The MIL-53(Fe) endowed the scaffold with superior protein absorption ability and preferable biocompatibility. The scaffolds have been shown to possess favorable osteogenesis and angiogenesis inducibility. It was indicated that MIL-53(Fe) modulated the mechanotransduction process of endothelial cells and induced increased cell stiffness by promoting the adsorption of adhesion-mediating extracellular matrix proteins to the scaffold, such as laminin, fibronectin, and perlecan et al., which contributed to the activation of the endothelial tip cell phenotype at sprouting angiogenesis. Therefore, this study effectively leveraged the intrinsic "breathing" properties of MIL-53 (Fe) to enhance the interaction between titanium alloy scaffolds and vascular endothelial cells, thereby facilitating the vascularization inducibility of the scaffold, particularly during the sprouting angiogenesis phase. This study indicates that MIL-53(Fe) coating represents a promising strategy to facilitate accelerated and sufficient vascularization and uncovers the scaffold-vessel interaction from a biomechanical perspective.
血管化在促进骨再生的加速过程中发挥着重要作用,同时还能增强人工骨植入物的稳定性和活力。尽管钛合金支架被设计成模仿人体骨组织的多孔结构以促进骨修复中的血管化,但其生物惰性限制了它们的更广泛应用。金属有机框架(MOF)MIL-53(Fe)的独特属性,即“呼吸”特性,能够促进细胞外基质蛋白的有效吸附,从而为支架与细胞粘附分子之间的有效相互作用提供可能性,这有助于提高钛合金支架的生物活性。在本研究中,水热处理后在支架上原位合成了MIL-53(Fe)。MIL-53(Fe)赋予了支架卓越的蛋白质吸收能力和良好的生物相容性。已证明这些支架具有良好的成骨和血管生成诱导能力。研究表明,MIL-53(Fe)通过促进介导粘附的细胞外基质蛋白如层粘连蛋白、纤连蛋白和基底膜聚糖等吸附到支架上,调节内皮细胞的机械转导过程并诱导细胞硬度增加,这有助于在发芽血管生成时激活内皮尖端细胞表型。因此,本研究有效地利用了MIL-53(Fe)的固有“呼吸”特性来增强钛合金支架与血管内皮细胞之间的相互作用,从而促进支架的血管生成诱导能力,特别是在发芽血管生成阶段。本研究表明,MIL-53(Fe)涂层是促进加速和充分血管化的一种有前途的策略,并从生物力学角度揭示了支架与血管的相互作用。