Suppr超能文献

基于物理引导的自监督学习从传统加权脑磁共振成像进行回顾性T和T映射:胶质母细胞瘤的技术发展与初步验证

Physics-guided self-supervised learning for retrospective T and T mapping from conventional weighted brain MRI: Technical developments and initial validation in glioblastoma.

作者信息

Qiu Shihan, Wang Lixia, Sati Pascal, Christodoulou Anthony G, Xie Yibin, Li Debiao

机构信息

Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.

Department of Bioengineering, UCLA, Los Angeles, California, USA.

出版信息

Magn Reson Med. 2024 Dec;92(6):2683-2695. doi: 10.1002/mrm.30226. Epub 2024 Jul 16.

Abstract

PURPOSE

To develop a self-supervised learning method to retrospectively estimate T and T values from clinical weighted MRI.

METHODS

A self-supervised learning approach was constructed to estimate T, T, and proton density maps from conventional T- and T-weighted images. MR physics models were employed to regenerate the weighted images from the network outputs, and the network was optimized based on loss calculated between the synthesized and input weighted images, alongside additional constraints based on prior information. The method was evaluated on healthy volunteer data, with conventional mapping as references. The reproducibility was examined on two 3.0T scanners. Performance in tumor characterization was inspected by applying the method to a public glioblastoma dataset.

RESULTS

For T and T estimation from three weighted images (T MPRAGE, T gradient echo sequences, and T turbo spin echo), the deep learning method achieved global voxel-wise error ≤9% in brain parenchyma and regional error ≤12.2% in six types of brain tissues. The regional measurements obtained from two scanners showed mean differences ≤2.4% and correlation coefficients >0.98, demonstrating excellent reproducibility. In the 50 glioblastoma patients, the retrospective quantification results were in line with literature reports from prospective methods, and the T values were found to be higher in tumor regions, with sensitivity of 0.90 and specificity of 0.92 in a voxel-wise classification task between normal and abnormal regions.

CONCLUSION

The self-supervised learning method is promising for retrospective T and T quantification from clinical MR images, with the potential to improve the availability of quantitative MRI and facilitate brain tumor characterization.

摘要

目的

开发一种自监督学习方法,用于从临床加权磁共振成像(MRI)中回顾性估计T1和T2值。

方法

构建一种自监督学习方法,从传统的T1加权和T2加权图像中估计T1、T2和质子密度图。利用磁共振物理模型从网络输出中重新生成加权图像,并基于合成加权图像与输入加权图像之间计算的损失对网络进行优化,同时结合基于先验信息的附加约束。该方法在健康志愿者数据上进行评估,以传统映射作为参考。在两台3.0T扫描仪上检查了可重复性。通过将该方法应用于一个公开的胶质母细胞瘤数据集,考察其在肿瘤特征分析方面的性能。

结果

对于从三张加权图像(T1 MPRAGE、T2梯度回波序列和T2快速自旋回波)估计T1和T2,深度学习方法在脑实质中实现了全局体素级误差≤9%,在六种脑组织类型中的区域误差≤12.2%。从两台扫描仪获得的区域测量结果显示平均差异≤2.4%,相关系数>0.98,表明具有出色的可重复性。在50例胶质母细胞瘤患者中,回顾性定量结果与前瞻性方法的文献报道一致,并且发现在肿瘤区域T1值更高,在正常区域与异常区域的体素级分类任务中,敏感性为0.90,特异性为0.92。

结论

自监督学习方法在从临床磁共振图像进行回顾性T1和T2定量方面具有前景,有可能提高定量MRI的可用性并促进脑肿瘤特征分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验