Suppr超能文献

通过整合先进的机器学习技术提升纳米材料光学传感器阵列,以加强对食品质量和安全的视觉检测。

Elevating nanomaterial optical sensor arrays through the integration of advanced machine learning techniques for enhancing visual inspection of food quality and safety.

作者信息

Lin Yuandong, Cheng Jun-Hu, Ma Ji, Zhou Chenyue, Sun Da-Wen

机构信息

School of Food Science and Engineering, South China University of Technology, Guangzhou, China.

Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.

出版信息

Crit Rev Food Sci Nutr. 2024 Jul 17:1-22. doi: 10.1080/10408398.2024.2376113.

Abstract

Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.

摘要

食物链中控制不力所导致的食品质量与安全问题对人类健康、社会稳定和经济发展有着重大影响,而光学传感器阵列(OSAs)能够有效应对这些挑战。本综述旨在总结基于纳米材料的OSA在食品质量与安全可视化监测方面的最新应用,包括比色传感器阵列(CSA)和荧光传感器阵列(FSA)。首先,描述了各种先进纳米材料的基本特性,主要包括金属纳米颗粒(MNPs)和纳米团簇(MNCs)、量子点(QDs)、上转换纳米颗粒(UCNPs)等。此外,还介绍了从不同传感元件与分析物之间的响应获得的高维数据的多种机器学习(ML)和深度学习(DL)方法。而且,全面总结了在农药残留、重金属离子、细菌污染、抗氧化剂、风味物质以及食品新鲜度检测方面的最新代表性应用。最后,讨论了基于纳米材料的OSAs面临的挑战和未来前景。相信随着人工智能(AI)技术和集成技术的进步,基于纳米材料的OSAs有望成为用于食品质量评估和安全控制的智能、有效且快速的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验