Suppr超能文献

缺血性中风的系统级计算建模:从细胞到患者

Systems-level computational modeling in ischemic stroke: from cells to patients.

作者信息

Li Geli, Zhao Yanyong, Ma Wen, Gao Yuan, Zhao Chen

机构信息

Gusu School, Nanjing Medical University, Suzhou, China.

School of Pharmacy, Nanjing Medical University, Nanjing, China.

出版信息

Front Physiol. 2024 Jul 2;15:1394740. doi: 10.3389/fphys.2024.1394740. eCollection 2024.

Abstract

Ischemic stroke, a significant threat to human life and health, refers to a class of conditions where brain tissue damage is induced following decreased cerebral blood flow. The incidence of ischemic stroke has been steadily increasing globally, and its disease mechanisms are highly complex and involve a multitude of biological mechanisms at various scales from genes all the way to the human body system that can affect the stroke onset, progression, treatment, and prognosis. To complement conventional experimental research methods, computational systems biology modeling can integrate and describe the pathogenic mechanisms of ischemic stroke across multiple biological scales and help identify emergent modulatory principles that drive disease progression and recovery. In addition, by running virtual experiments and trials in computers, these models can efficiently predict and evaluate outcomes of different treatment methods and thereby assist clinical decision-making. In this review, we summarize the current research and application of systems-level computational modeling in the field of ischemic stroke from the multiscale mechanism-based, physics-based and omics-based perspectives and discuss how modeling-driven research frameworks can deliver insights for future stroke research and drug development.

摘要

缺血性中风是对人类生命和健康的重大威胁,指的是一类由于脑血流量减少导致脑组织损伤的病症。全球范围内,缺血性中风的发病率一直在稳步上升,其发病机制高度复杂,涉及从基因到人体系统等各个尺度的多种生物学机制,这些机制会影响中风的发作、进展、治疗和预后。为了补充传统的实验研究方法,计算系统生物学建模可以整合并描述缺血性中风在多个生物学尺度上的致病机制,并有助于识别驱动疾病进展和恢复的新调节原则。此外,通过在计算机上运行虚拟实验和试验,这些模型可以有效地预测和评估不同治疗方法的效果,从而辅助临床决策。在本综述中,我们从基于多尺度机制、基于物理学和基于组学的角度总结了系统级计算建模在缺血性中风领域的当前研究和应用,并讨论了建模驱动的研究框架如何为未来的中风研究和药物开发提供见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ba/11250596/ff7d771edc30/fphys-15-1394740-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验