Suppr超能文献

基于糖基磷脂酰肌醇锚生物合成途径的生物标志物识别,利用机器学习预测乳腺癌的预后和T细胞耗竭状态

Glycosylphosphatidylinositol anchor biosynthesis pathway-based biomarker identification with machine learning for prognosis and T cell exhaustion status prediction in breast cancer.

作者信息

Wu Haodong, Wu Zhixuan, Li Hongfeng, Wang Ziqiong, Chen Yao, Bao Jingxia, Chen Buran, Xu Shuning, Xia Erjie, Ye Daijiao, Dai Xuanxuan

机构信息

Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.

School of Molecular Science, University of Western Australia, Perth, WA, Australia.

出版信息

Front Immunol. 2024 Jul 2;15:1392940. doi: 10.3389/fimmu.2024.1392940. eCollection 2024.

Abstract

As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical settings and promoting the efficacy of immune checkpoint blockade therapies. In eukaryotes, numerous cell surface proteins are tethered to the plasma membrane via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating the proper translocation of membrane proteins. However, the available evidence is insufficient to support any additional functional involvement of GPI anchors. Here, we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer (BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be considered as a prognostic risk factor for BC. Patients with high GPI-anchor biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis in exhausted CD8 T cells was higher than normal CD8 T cells, which was not observed between malignant epithelial cells and normal mammary epithelial cells. In addition, we also found that GPI -anchor biosynthesis related genes can be used to diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic model and the prognostic model showed good AUC values. Finally, we confirmed our findings in cells and clinical samples. Knockdown of PIGU gene expression significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines. Immunofluorescence results from clinical samples showed reduced aggregation of CD8 T cells in tissues with high expression of GPAA1 and PIGU.

摘要

作为抗肿瘤免疫的主要组成部分,T细胞在肿瘤微环境(TME)中容易发生耗竭和功能障碍。深入了解TME中的T细胞耗竭(TEX)对于在临床环境中有效解决TEX问题和提高免疫检查点阻断疗法的疗效至关重要。在真核生物中,许多细胞表面蛋白通过糖基磷脂酰肌醇(GPI)锚定连接到质膜上,这在促进膜蛋白的正确转运中起着关键作用。然而,现有证据不足以支持GPI锚定的任何其他功能参与。在这里,我们研究了乳腺癌(BC)患者TME中GPI锚定生物合成的特征,特别是其与TEX的相关性。GPI锚定生物合成应被视为BC的一个预后危险因素。GPI锚定生物合成水平高的患者TEX更严重。并且耗竭的CD8 T细胞中GPI锚定生物合成水平高于正常CD8 T细胞,而在恶性上皮细胞和正常乳腺上皮细胞之间未观察到这种情况。此外,我们还发现GPI锚定生物合成相关基因可用于诊断BC患者的TEX状态并预测预后,TEX诊断模型和预后模型均显示出良好的AUC值。最后,我们在细胞和临床样本中证实了我们的发现。敲低PIGU基因表达显著降低了MDA-MB-231和MCF-7细胞系的增殖率。临床样本的免疫荧光结果显示,在GPAA1和PIGU高表达的组织中,CD8 T细胞的聚集减少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4217/11249538/b8092fef6f50/fimmu-15-1392940-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验