Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
New York Blood Center, New York, New York 10065, USA.
Nanoscale. 2024 Aug 7;16(30):14330-14338. doi: 10.1039/d4nr01208a.
In recent years, using pharmacological ascorbic acid has emerged as a promising therapeutic approach in cancer treatment, owing to its capacity to induce extracellular hydrogen peroxide (HO) production in solid tumors. The HO is then converted into cytotoxic hydroxyl free radicals (HO˙) by redox-active Fe inside cells. However, the high dosage of ascorbic acid required for efficacy is hampered by adverse effects such as kidney stone formation. In a recent study, we demonstrated the efficient catalytic conversion of HO to HO˙ by wüstite (FeO) nanoparticles (WNPs) through a heterogenous Fenton reaction. Here, we explore whether WNPs can enhance the therapeutic potential of ascorbic acid, thus mitigating its dose-related limitations. Our findings reveal distinct pH dependencies for WNPs and ascorbic acid in the Fenton reaction and HO generation, respectively. Importantly, WNPs exhibit the capability to either impede or enhance the cytotoxic effect of ascorbic acid, depending on the spatial segregation of the two reagents by cellular compartments. Furthermore, our study demonstrates that treatment with ascorbic acid promotes the polarization of WNP-loaded macrophages toward a pro-inflammatory M1 phenotype, significantly suppressing the growth of 4T1 breast cancer cells. This study highlights the importance of orchestrating the interplay between ascorbic acid and nanozymes in cancer therapy and presents a novel macrophage-based cell therapy approach.
近年来,由于药理学抗坏血酸能够在实体瘤中诱导细胞外过氧化氢(HO)的产生,因此它成为癌症治疗中一种很有前途的治疗方法。HO 随后被细胞内的氧化还原活性铁(Fe)转化为细胞毒性羟基自由基(HO˙)。然而,抗坏血酸的高剂量疗效受到肾结石形成等不良反应的限制。在最近的一项研究中,我们通过非均相芬顿反应证明了赤铁矿(FeO)纳米颗粒(WNPs)有效地将 HO 催化转化为 HO˙。在这里,我们探讨了 WNPs 是否可以增强抗坏血酸的治疗潜力,从而减轻其剂量相关的限制。我们的研究结果表明,WNPs 和抗坏血酸在芬顿反应和 HO 生成中分别具有明显的 pH 依赖性。重要的是,WNPs 可以根据细胞区室中两种试剂的空间分离,抑制或增强抗坏血酸的细胞毒性作用。此外,我们的研究表明,用抗坏血酸处理会促使负载 WNPs 的巨噬细胞向促炎 M1 表型极化,从而显著抑制 4T1 乳腺癌细胞的生长。这项研究强调了在癌症治疗中协调抗坏血酸和纳米酶相互作用的重要性,并提出了一种基于巨噬细胞的新型细胞治疗方法。