文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

氧化铁纳米颗粒在重塑巨噬细胞反应和免疫肿瘤微环境中的应用。

The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment.

机构信息

Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, Madrid, Spain.

Centro de Investigación en Sanidad Animal, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (CISA-INIA)-CSIC, Valdeolmos, Madrid, Spain.

出版信息

Front Immunol. 2021 Jun 9;12:693709. doi: 10.3389/fimmu.2021.693709. eCollection 2021.


DOI:10.3389/fimmu.2021.693709
PMID:34177955
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8221395/
Abstract

The synthesis and functionalization of iron oxide nanoparticles (IONPs) is versatile, which has enhanced the interest in studying them as theranostic agents over recent years. As IONPs begin to be used for different biomedical applications, it is important to know how they affect the immune system and its different cell types, especially their interaction with the macrophages that are involved in their clearance. How immune cells respond to therapeutic interventions can condition the systemic and local tissue response, and hence, the final therapeutic outcome. Thus, it is fundamental to understand the effects that IONPs have on the immune response, especially in cancer immunotherapy. The biological effects of IONPs may be the result of intrinsic features of their iron oxide core, inducing reactive oxygen species (ROS) and modulating intracellular redox and iron metabolism. Alternatively, their effects are driven by the nanoparticle coating, for example, through cell membrane receptor engagement. Indeed, exploiting these properties of IONPs could lead to the development of innovative therapies. In this review, after a presentation of the elements that make up the tumor immunological microenvironment, we will review and discuss what is currently known about the immunomodulatory mechanisms triggered by IONPs, mainly focusing on macrophage polarization and reprogramming. Consequently, we will discuss the implications of these findings in the context of plausible therapeutic scenarios for cancer immunotherapy.

摘要

氧化铁纳米粒子(IONPs)的合成和功能化具有多功能性,近年来,它们作为治疗诊断试剂的研究兴趣日益浓厚。随着 IONPs 开始用于不同的生物医学应用,了解它们如何影响免疫系统及其不同的细胞类型变得尤为重要,特别是它们与参与清除作用的巨噬细胞之间的相互作用。免疫细胞对治疗干预的反应方式可以影响全身和局部组织的反应,进而影响最终的治疗效果。因此,了解 IONPs 对免疫反应的影响,特别是在癌症免疫治疗中,是至关重要的。IONPs 的生物学效应可能是其氧化铁核心固有特性的结果,诱导活性氧(ROS)并调节细胞内氧化还原和铁代谢。或者,它们的作用是由纳米粒子涂层驱动的,例如,通过细胞膜受体的参与。实际上,利用这些 IONPs 的特性可能会导致创新疗法的发展。在这篇综述中,在介绍构成肿瘤免疫微环境的元素之后,我们将回顾和讨论目前已知的 IONPs 触发的免疫调节机制,主要集中在巨噬细胞极化和重编程上。因此,我们将讨论这些发现在癌症免疫治疗的可能治疗方案背景下的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/7c5b5a00596f/fimmu-12-693709-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/453ccf1f306c/fimmu-12-693709-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/9e0bc991e0c3/fimmu-12-693709-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/343904680c44/fimmu-12-693709-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/7c5b5a00596f/fimmu-12-693709-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/453ccf1f306c/fimmu-12-693709-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/9e0bc991e0c3/fimmu-12-693709-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/343904680c44/fimmu-12-693709-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/377f/8221395/7c5b5a00596f/fimmu-12-693709-g004.jpg

相似文献

[1]
The Use of Iron Oxide Nanoparticles to Reprogram Macrophage Responses and the Immunological Tumor Microenvironment.

Front Immunol. 2021

[2]
The Iron Curtain: Macrophages at the Interface of Systemic and Microenvironmental Iron Metabolism and Immune Response in Cancer.

Front Immunol. 2021

[3]
Antibody-Decorated Nanoplatform to Reprogram Macrophage and Block Immune Checkpoint LSECtin for Effective Cancer Immunotherapy.

Nano Lett. 2024-7-17

[4]
Immunotherapy for cancer: effects of iron oxide nanoparticles on polarization of tumor-associated macrophages.

Nanomedicine (Lond). 2021-12

[5]
Tumor-associated macrophages: A promising target for a cancer immunotherapeutic strategy.

Pharmacol Res. 2020-11

[6]
Biological Effects of Nanoparticles on Macrophage Polarization in the Tumor Microenvironment.

Nanotheranostics. 2019-1-1

[7]
Emerging Nanoparticle Strategies for Modulating Tumor-Associated Macrophage Polarization.

Biomolecules. 2021-12-20

[8]
Cancer immunotherapeutic effect of carboxymethylated β-d-glucan coupled with iron oxide nanoparticles via reprogramming tumor-associated macrophages.

Int J Biol Macromol. 2023-2-15

[9]
Novel Opportunities for Cathepsin S Inhibitors in Cancer Immunotherapy by Nanocarrier-Mediated Delivery.

Cells. 2020-9-2

[10]
Superparamagnetic Iron Oxide Nanoparticles Reprogram the Tumor Microenvironment and Reduce Lung Cancer Regrowth after Crizotinib Treatment.

ACS Nano. 2024-4-30

引用本文的文献

[1]
Superparamagnetic iron oxide nanoparticles (SPIONs) in targeting brain tumors: advances and challenges.

Med Oncol. 2025-7-16

[2]
Development of Immune-Regulatory Pseudo-Protein-Coated Iron Oxide Nanoparticles for Enhanced Treatment of Triple-Negative Breast Tumor.

Nanomaterials (Basel). 2025-6-30

[3]
Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications.

Nanoscale Adv. 2025-3-24

[4]
How to Use Macrophages Against Cancer.

Cells. 2024-11-23

[5]
A novel hollow iron nanoparticle system loading PEG-FeO with C5a receptor antagonist for breast cancer treatment.

Front Immunol. 2024

[6]
Mechanistic studies of tumor-associated macrophage immunotherapy.

Front Immunol. 2024

[7]
Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles.

Front Immunol. 2024

[8]
Iron oxide nanozymes enhanced by ascorbic acid for macrophage-based cancer therapy.

Nanoscale. 2024-8-7

[9]
Iron Oxide Nanoparticles Inhibit Tumor Progression and Suppress Lung Metastases in Mouse Models of Breast Cancer.

ACS Nano. 2024-4-16

[10]
Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors.

Bioact Mater. 2024-3-20

本文引用的文献

[1]
Neuroimmune cleanup crews in brain injury.

Trends Immunol. 2021-6

[2]
Myelin Repair: From Animal Models to Humans.

Front Cell Neurosci. 2021-4-14

[3]
Little cells of the little brain: microglia in cerebellar development and function.

Trends Neurosci. 2021-7

[4]
Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas.

Brain Sci. 2021-4-7

[5]
Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury.

Front Immunol. 2020

[6]
Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy.

Signal Transduct Target Ther. 2021-1-12

[7]
Extracellular Citrate Fuels Cancer Cell Metabolism and Growth.

Front Cell Dev Biol. 2020-12-4

[8]
Comparative analysis of the tumor immune-microenvironment of primary and brain metastases of non-small-cell lung cancer reveals organ-specific and EGFR mutation-dependent unique immune landscape.

Cancer Immunol Immunother. 2021-7

[9]
Predicting postoperative peritoneal metastasis in gastric cancer with serosal invasion using a collagen nomogram.

Nat Commun. 2021-1-8

[10]
The Roles of Stroma-Derived Chemokine in Different Stages of Cancer Metastases.

Front Immunol. 2020

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索