Suppr超能文献

基因组学和气象学能否预测城市环境中的军团病爆发?

Can genomics and meteorology predict outbreaks of legionellosis in urban settings?

机构信息

Center for Infectious Diseases and Microbiology- Public Health, Westmead Hospital, Sydney, New South Wales, Australia.

Sydney Infectious Diseases Institute, The University of Sydney, Sydney, New South Wales, Australia.

出版信息

Appl Environ Microbiol. 2024 Aug 21;90(8):e0065824. doi: 10.1128/aem.00658-24. Epub 2024 Jul 17.

Abstract

is ubiquitous and sporadically infects humans causing Legionnaire's disease (LD). Globally, reported cases of LD have risen fourfold from 2000 to 2014. In 2016, Sydney, Australia was the epicenter of an outbreak caused by serogroup 1 (Lpsg1). Whole-genome sequencing was instrumental in identifying the causal clone which was found in multiple locations across the city. This study examined the epidemiology of Lpsg1 in an urban environment, assessed typing schemes to classify resident clones, and investigated the association between local climate variables and LD outbreaks. Of 223 local Lpsg1 isolates, we identified dominant clones with one clone isolated from patients in high frequency during outbreak investigations. The core genome multi-locus sequence typing scheme was the most reliable in identifying this Lpsg1 clone. While an increase in humidity and rainfall was found to coincide with a rise in LD cases, the incidence of the major outbreak clone did not link to weather phenomena. These findings demonstrated the role of high-resolution typing and weather context assessment in determining source attribution for LD outbreaks in urban settings, particularly when clinical isolates remain scarce.IMPORTANCEWe investigated the genomic and meteorological influences of infections caused by in Sydney, Australia. Our study contributes to a knowledge gap of factors that drive outbreaks of legionellosis compared to sporadic infections in urban settings. In such cases, clinical isolates can be rare, and thus, other data are needed to inform decision-making around control measures. The study revealed that core genome multi-locus sequence typing is a reliable and adaptable technique when investigating Lpsg1 outbreaks. In Sydney, the genomic profile of Lpsg1 was dominated by a single clone, which was linked to numerous community cases over a period of 40 years. Interestingly, the peak in legionellosis cases during Autumn was not associated with this prevalent outbreak clone. Incorporating meteorological data with Lpsg1 genomics can support risk assessment strategies for legionellosis in urban environments, and this approach may be relevant for other densely populated regions globally.

摘要

是普遍存在的,偶尔会感染人类,导致军团病(LD)。从 2000 年到 2014 年,全球报告的 LD 病例增加了四倍。2016 年,澳大利亚悉尼是由血清群 1(Lpsg1)引起的暴发的震中。全基因组测序在确定因果克隆方面发挥了重要作用,该克隆在全市多个地方都有发现。本研究在城市环境中研究了 Lpsg1 的流行病学,评估了用于分类居民克隆的分型方案,并调查了当地气候变量与 LD 暴发之间的关联。在 223 个本地 Lpsg1 分离株中,我们鉴定了优势克隆,其中一个克隆在暴发调查期间从患者中高频分离。核心基因组多位点序列分型方案是识别该 Lpsg1 克隆最可靠的方法。虽然发现湿度和降雨量增加与 LD 病例增加同时发生,但主要暴发克隆的发病率与天气现象无关。这些发现表明,在城市环境中确定 LD 暴发的源归因时,高分辨率分型和天气情况评估的作用,特别是在临床分离株仍然稀缺的情况下。

重要性

我们调查了在澳大利亚悉尼由引起的感染的基因组和气象影响。我们的研究有助于填补在城市环境中驱动军团病暴发与散发性感染的因素方面的知识空白。在这种情况下,临床分离株可能很少,因此需要其他数据来为控制措施提供决策依据。该研究表明,核心基因组多位点序列分型是一种可靠且适应性强的技术,可用于调查 Lpsg1 暴发。在悉尼,Lpsg1 的基因组谱由单个克隆主导,该克隆在 40 年的时间内与许多社区病例有关。有趣的是,秋季军团病病例的高峰期与这种流行的暴发克隆无关。将气象数据与 Lpsg1 基因组学相结合,可以为城市环境中的军团病风险评估策略提供支持,这种方法可能对全球其他人口密集地区也具有相关性。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验