Suppr超能文献

神经退行性综合征中表型变异和进展的分级多维几何学。

The graded multidimensional geometry of phenotypic variation and progression in neurodegenerative syndromes.

作者信息

Ramanan Siddharth, Akarca Danyal, Henderson Shalom K, Rouse Matthew A, Allinson Kieren, Patterson Karalyn, Rowe James B, Lambon Ralph Matthew A

机构信息

Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK.

Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge CB2 0SZ, UK.

出版信息

Brain. 2025 Feb 3;148(2):448-466. doi: 10.1093/brain/awae233.

Abstract

Clinical variants of Alzheimer's disease and frontotemporal lobar degeneration display a spectrum of cognitive-behavioural changes varying between individuals and over time. Understanding the landscape of these graded individual/group level longitudinal variations is critical for precise phenotyping; however, this remains challenging to model. Addressing this challenge, we leverage the National Alzheimer's Coordinating Center database to derive a unified geometric framework of graded longitudinal phenotypic variation in Alzheimer's disease and frontotemporal lobar degeneration. We included three time point, cognitive-behavioural and clinical data from 390 typical, atypical and intermediate Alzheimer's disease and frontotemporal lobar degeneration variants (114 typical Alzheimer's disease; 107 behavioural variant frontotemporal dementia; 42 motor variants of frontotemporal lobar degeneration; and 103 primary progressive aphasia patients). On these data, we applied advanced data-science approaches to derive low-dimensional geometric spaces capturing core features underpinning clinical progression of Alzheimer's disease and frontotemporal lobar degeneration syndromes. To do so, we first used principal component analysis to derive six axes of graded longitudinal phenotypic variation capturing patient-specific movement along and across these axes. Then, we distilled these axes into a visualizable 2D manifold of longitudinal phenotypic variation using Uniform Manifold Approximation and Projection. Both geometries together enabled the assimilation and interrelation of paradigmatic and mixed cases, capturing dynamic individual trajectories and linking syndromic variability to neuropathology and key clinical end points, such as survival. Through these low-dimensional geometries, we show that (i) specific syndromes (Alzheimer's disease and primary progressive aphasia) converge over time into a de-differentiated pooled phenotype, while others (frontotemporal dementia variants) diverge to look different from this generic phenotype; (ii) phenotypic diversification is predicted by simultaneous progression along multiple axes, varying in a graded manner between individuals and syndromes; and (iii) movement along specific principal axes predicts survival at 36 months in a syndrome-specific manner and in individual pathological groupings. The resultant mapping of dynamics underlying cognitive-behavioural evolution potentially holds paradigm-changing implications to predicting phenotypic diversification and phenotype-neurobiological mapping in Alzheimer's disease and frontotemporal lobar degeneration.

摘要

阿尔茨海默病和额颞叶变性的临床变体表现出一系列认知行为变化,这些变化在个体之间以及随时间而有所不同。了解这些分级的个体/群体水平纵向变化情况对于精确表型分析至关重要;然而,对其进行建模仍然具有挑战性。为应对这一挑战,我们利用国家阿尔茨海默病协调中心数据库,得出了阿尔茨海默病和额颞叶变性分级纵向表型变异的统一几何框架。我们纳入了来自390例典型、非典型和中间型阿尔茨海默病及额颞叶变性变体(114例典型阿尔茨海默病;107例行为变异型额颞叶痴呆;42例额颞叶变性的运动变异型;以及103例原发性进行性失语患者)的三个时间点的认知行为和临床数据。基于这些数据,我们应用先进的数据科学方法得出低维几何空间,以捕捉支撑阿尔茨海默病和额颞叶变性综合征临床进展的核心特征。为此,我们首先使用主成分分析得出分级纵向表型变异的六个轴,以捕捉患者在这些轴上以及跨轴的特定运动。然后,我们使用均匀流形逼近和投影将这些轴提炼成一个可可视化的纵向表型变异二维流形。这两种几何结构共同实现了典型病例和混合病例的同化与相互关联,捕捉了动态的个体轨迹,并将综合征变异性与神经病理学及关键临床终点(如生存)联系起来。通过这些低维几何结构,我们表明:(i)特定综合征(阿尔茨海默病和原发性进行性失语)随时间收敛为一种去分化的合并表型,而其他综合征(额颞叶痴呆变体)则分化开来,与这种一般表型不同;(ii)表型多样化是由沿多个轴的同时进展所预测的,在个体和综合征之间以分级方式变化;(iii)沿特定主轴的运动以综合征特异性方式以及在个体病理分组中预测36个月时的生存情况。认知行为演变背后动态的最终映射可能对预测阿尔茨海默病和额颞叶变性中的表型多样化以及表型 - 神经生物学映射具有改变范式的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef8a/11788217/30256becb154/awae233f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验