Suppr超能文献

对齐的UMAP在纵向生物医学研究中的应用。

Application of Aligned-UMAP to longitudinal biomedical studies.

作者信息

Dadu Anant, Satone Vipul K, Kaur Rachneet, Koretsky Mathew J, Iwaki Hirotaka, Qi Yue A, Ramos Daniel M, Avants Brian, Hesterman Jacob, Gunn Roger, Cookson Mark R, Ward Michael E, Singleton Andrew B, Campbell Roy H, Nalls Mike A, Faghri Faraz

机构信息

Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA.

Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

Patterns (N Y). 2023 May 8;4(6):100741. doi: 10.1016/j.patter.2023.100741. eCollection 2023 Jun 9.

Abstract

High-dimensional data analysis starts with projecting the data to low dimensions to visualize and understand the underlying data structure. Several methods have been developed for dimensionality reduction, but they are limited to cross-sectional datasets. The recently proposed Aligned-UMAP, an extension of the uniform manifold approximation and projection (UMAP) algorithm, can visualize high-dimensional longitudinal datasets. We demonstrated its utility for researchers to identify exciting patterns and trajectories within enormous datasets in biological sciences. We found that the algorithm parameters also play a crucial role and must be tuned carefully to utilize the algorithm's potential fully. We also discussed key points to remember and directions for future extensions of Aligned-UMAP. Further, we made our code open source to enhance the reproducibility and applicability of our work. We believe our benchmarking study becomes more important as more and more high-dimensional longitudinal data in biomedical research become available.

摘要

高维数据分析始于将数据投影到低维度,以可视化并理解潜在的数据结构。已经开发了几种用于降维的方法,但它们仅限于横截面数据集。最近提出的对齐均匀流形近似与投影(Aligned-UMAP)算法是均匀流形近似与投影(UMAP)算法的扩展,它可以可视化高维纵向数据集。我们展示了它对研究人员在生物科学的海量数据集中识别令人兴奋的模式和轨迹的效用。我们发现算法参数也起着关键作用,必须仔细调整以充分发挥算法的潜力。我们还讨论了需要牢记的要点以及Aligned-UMAP未来扩展的方向。此外,我们将代码开源,以提高我们工作的可重复性和适用性。我们相信,随着生物医学研究中越来越多的高维纵向数据可用,我们的基准研究变得更加重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5968/10318357/2847ee38b6c8/fx1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验