Suppr超能文献

通过有机金属化学桥稳定卤化铅钙钛矿以实现高效稳定的光伏器件

Stabilizing Lead Halide Perovskites via an Organometallic Chemical Bridge for Efficient and Stable Photovoltaics.

作者信息

Guo Junjun, Wang Bei, Min Jie, Shi Junwei, Wang Yao, Ling Xufeng, Shi Yafei, Ullah Ihsan, Chu Dewei, Ma Wanli, Yuan Jianyu

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China.

Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

出版信息

ACS Nano. 2024 Jul 17. doi: 10.1021/acsnano.4c07093.

Abstract

Defects around the surface and grain boundaries of perovskite films normally cause severe nonradiative recombination and imbalanced charge carrier transport, further limiting both the efficiency and stability of perovskite solar cells (PSCs). To tackle this critical issue, we propose a chemical bridge strategy to reconstruct the interface using organometallic molecules. The commercially available molecule bis(diphenylphosphino)ferrocene (FcP), with a unique bridge molecular structure, anchors and chelates Pb atoms by forming strong Pb-P bonds and further passivates both surfaces and grain boundaries. Detailed characterization revealed that bridge molecule FcP reconstruction can effectively suppress nonradiative recombination, and the electron delocalization properties of the ferrocene core can further achieve more balanced interfacial carrier transport. The resultant N-i-P PSC device outputs close to 25% efficiency together with one of the best reported operational stabilities, maintaining over 95% of the initial efficiency after 1000 h of continuous operation at the maximum power point under 1-sun illumination.

摘要

钙钛矿薄膜表面和晶界周围的缺陷通常会导致严重的非辐射复合和电荷载流子传输失衡,进一步限制了钙钛矿太阳能电池(PSC)的效率和稳定性。为了解决这一关键问题,我们提出了一种化学桥接策略,使用有机金属分子来重建界面。市售分子双(二苯基膦)二茂铁(FcP)具有独特的桥接分子结构,通过形成强Pb-P键来锚定和螯合Pb原子,并进一步钝化表面和晶界。详细表征表明,桥接分子FcP重建可以有效抑制非辐射复合,二茂铁核心的电子离域特性可以进一步实现更平衡的界面载流子传输。由此产生的N-i-P PSC器件输出效率接近25%,同时具有报告的最佳操作稳定性之一,在1个太阳光照下于最大功率点连续运行1000小时后,保持初始效率的95%以上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验