Vanin Francesco, Tremlett William D J, Gao Danpeng, Liu Qi, Li Bo, Li Shuai, Gong Jianqiu, Wu Xin, Li Zhen, Brown Ryan K, Qian Liangchen, Zhang Chunlei, Sun Xianglang, Li Xintong, Zeng Xiao Cheng, Zhu Zonglong, Long Nicholas J
Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Department of Chemistry, Imperial College London MSRH Building, White City Campus, W12 0BZ, London, UK.
Angew Chem Int Ed Engl. 2025 Apr 1;64(14):e202424041. doi: 10.1002/anie.202424041. Epub 2025 Jan 26.
Achieving rational control over chemical and energetic properties at the perovskite/electron transport layer (ETL) interface is crucial for realizing highly efficient and stable next-generation inverted perovskite solar cells (PSCs). To address this, we developed multifunctional ferrocene (Fc)-based interlayers engineered to exhibit adjustable passivating and electrochemical characteristics. These interlayers are designed to reduce non-radiative recombination, and to modulate the work function (WF) and uniformity of the perovskite surface, thereby enhancing device performance. The key role played by the highest occupied molecular orbital energies (E) of the Fc compounds relative to the perovskite valance band maximum (E) is revealed. This relationship is pivotal in controlling band bending and optimizing charge extraction. Notably, the conformationally flexible and more easily oxidized ferrocenyl-bis-furyl-2-carboxylate (2) is found to more effectively bind with undercoordinated Pb surface sites and modulate interfacial energetics, resulting in inverted PSCs achieving champion efficiencies of 25.16 %. These cells also displayed excellent stability, retaining >92 % of the initial efficiency after 1,000 h of maximum power point operation at 65 °C. By correlating the broadly tunable Fc-E with a decreased and homogenized perovskite surface WF, our work advances our understanding of Fc-based interlayers and opens new pathways for their application in high-efficiency solar technologies.
在钙钛矿/电子传输层(ETL)界面实现对化学和能量性质的合理控制,对于实现高效且稳定的下一代倒置钙钛矿太阳能电池(PSC)至关重要。为解决这一问题,我们开发了基于多功能二茂铁(Fc)的中间层,其设计旨在展现出可调节的钝化和电化学特性。这些中间层旨在减少非辐射复合,并调节钙钛矿表面的功函数(WF)和均匀性,从而提高器件性能。揭示了Fc化合物的最高占据分子轨道能量(E)相对于钙钛矿价带最大值(E)所起的关键作用。这种关系对于控制能带弯曲和优化电荷提取至关重要。值得注意的是,发现构象灵活且更易氧化的二茂铁基双呋喃-2-羧酸酯(2)能更有效地与配位不足的Pb表面位点结合并调节界面能量,从而使倒置PSC的冠军效率达到25.16%。这些电池还表现出出色的稳定性,在65°C下最大功率点运行1000小时后,仍保留了初始效率的92%以上。通过将广泛可调的Fc-E与降低且均匀化的钙钛矿表面WF相关联,我们的工作推进了我们对基于Fc的中间层的理解,并为其在高效太阳能技术中的应用开辟了新途径。