Suppr超能文献

揭示低频电刺激对培养海马神经网络的网络同步和学习行为的影响。

Unveiling the impact of low-frequency electrical stimulation on network synchronization and learning behavior in cultured hippocampal neural networks.

机构信息

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China.

State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, PR China.

出版信息

Biochem Biophys Res Commun. 2024 Oct 30;731:150363. doi: 10.1016/j.bbrc.2024.150363. Epub 2024 Jul 8.

Abstract

Understanding the dynamics of neural networks and their response to external stimuli is crucial for unraveling the mechanisms associated with learning processes. In this study, we hypothesized that electrical stimulation (ES) would lead to significant alterations in the activity patterns of hippocampal neuronal networks and investigated the effects of low-frequency ES on hippocampal neuronal populations using the microelectrode arrays (MEAs). Our findings revealed significant alterations in the activity of hippocampal neuronal networks following low-frequency ES trainings. Post-stimulation, the neural activity exhibited an organized burst firing pattern characterized by increased spike and burst firings, increased synchronization, and enhanced learning behaviors. Analysis of peri-stimulus time histograms (PSTHs) further revealed that low-frequency ES (1Hz) significantly enhanced neural plasticity, thereby facilitating the learning process of cultured neurons, whereas high-frequency ES (>10Hz) impeded this process. Moreover, we observed a substantial increase in correlations and connectivity within neuronal networks following ES trainings. These alterations in network properties indicated enhanced synaptic plasticity and emphasized the positive impact of low-frequency ES on hippocampal neural activities, contributing to the brain's capacity for learning and memory.

摘要

理解神经网络的动态及其对外部刺激的反应对于揭示与学习过程相关的机制至关重要。在这项研究中,我们假设电刺激(ES)将导致海马神经元网络的活动模式发生显著变化,并使用微电极阵列(MEA)研究低频 ES 对海马神经元群体的影响。我们的研究结果表明,低频 ES 训练后海马神经元网络的活动发生了显著变化。刺激后,神经活动表现出有组织的爆发式放电模式,其特征是尖峰和爆发式放电增加、同步性增加以及学习行为增强。对刺激后时间直方图(PSTH)的分析进一步表明,低频 ES(1Hz)显著增强了神经可塑性,从而促进了培养神经元的学习过程,而高频 ES(>10Hz)则阻碍了这一过程。此外,我们观察到 ES 训练后神经元网络内的相关性和连接性显著增加。这些网络特性的变化表明了增强的突触可塑性,并强调了低频 ES 对海马神经活动的积极影响,有助于大脑的学习和记忆能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验