Suppr超能文献

采用基于实空间原子中心深度学习方法高效确定固体的玻恩有效电荷、纵光学-横光学分裂以及拉曼张量。

Efficient determination of Born-effective charges, LO-TO splitting, and Raman tensors of solids with a real-space atom-centered deep learning approach.

作者信息

Malenfant-Thuot Olivier, Ryczko Kevin, Tamblyn Isaac, Côté Michel

机构信息

Département de physique et Institut Courtois, Université de Montréal, Montréal, Québec, Canada.

Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.

出版信息

J Phys Condens Matter. 2024 Jul 25;36(42). doi: 10.1088/1361-648X/ad64a2.

Abstract

We introduce a deep neural network (DNN) framework called theeal-spacetomicecompositionwork (radnet), which is capable of making accurate predictions of polarization and of electronic dielectric permittivity tensors in solids and aims to address limitations of previously available machine learning models for Raman predictions in periodic systems. This framework builds on previous, atom-centered approaches while utilizing deep convolutional neural networks. We report excellent accuracies on direct predictions for two prototypical examples: GaAs and BN. We then use automatic differentiation to efficiently calculate the Born-effective charges, longitudinal optical-transverse optical (LO-TO) splitting frequencies, and Raman tensors of these materials. We compute the Raman spectra, and find agreement withresults. Lastly, we explore ways to generalize the predictions of polarization while taking into account periodic boundary conditions and symmetries.

摘要

我们引入了一个名为theeal-spacetomicecompositionwork(radnet)的深度神经网络(DNN)框架,它能够准确预测固体中的极化和电子介电常数张量,旨在解决先前可用的机器学习模型在周期性系统中进行拉曼预测的局限性。该框架在先前以原子为中心的方法基础上构建,同时利用深度卷积神经网络。我们报告了对两个典型示例GaAs和BN直接预测的优异准确率。然后,我们使用自动微分有效地计算这些材料的玻恩有效电荷、纵向光学 - 横向光学(LO - TO)分裂频率和拉曼张量。我们计算了拉曼光谱,并发现与结果相符。最后,我们探索在考虑周期性边界条件和对称性的同时推广极化预测的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验