Malenfant-Thuot Olivier, Ryczko Kevin, Tamblyn Isaac, Côté Michel
Département de physique et Institut Courtois, Université de Montréal, Montréal, Québec, Canada.
Department of Physics, University of Ottawa, Ottawa, Ontario, Canada.
J Phys Condens Matter. 2024 Jul 25;36(42). doi: 10.1088/1361-648X/ad64a2.
We introduce a deep neural network (DNN) framework called theeal-spacetomicecompositionwork (radnet), which is capable of making accurate predictions of polarization and of electronic dielectric permittivity tensors in solids and aims to address limitations of previously available machine learning models for Raman predictions in periodic systems. This framework builds on previous, atom-centered approaches while utilizing deep convolutional neural networks. We report excellent accuracies on direct predictions for two prototypical examples: GaAs and BN. We then use automatic differentiation to efficiently calculate the Born-effective charges, longitudinal optical-transverse optical (LO-TO) splitting frequencies, and Raman tensors of these materials. We compute the Raman spectra, and find agreement withresults. Lastly, we explore ways to generalize the predictions of polarization while taking into account periodic boundary conditions and symmetries.
我们引入了一个名为theeal-spacetomicecompositionwork(radnet)的深度神经网络(DNN)框架,它能够准确预测固体中的极化和电子介电常数张量,旨在解决先前可用的机器学习模型在周期性系统中进行拉曼预测的局限性。该框架在先前以原子为中心的方法基础上构建,同时利用深度卷积神经网络。我们报告了对两个典型示例GaAs和BN直接预测的优异准确率。然后,我们使用自动微分有效地计算这些材料的玻恩有效电荷、纵向光学 - 横向光学(LO - TO)分裂频率和拉曼张量。我们计算了拉曼光谱,并发现与结果相符。最后,我们探索在考虑周期性边界条件和对称性的同时推广极化预测的方法。