文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

近红外光触发的用于癌症成像和光免疫治疗的破坏细胞膜的纳米颗粒。

Nanoparticles destabilizing the cell membranes triggered by NIR light for cancer imaging and photo-immunotherapy.

作者信息

Tang Dongsheng, Cui Minhui, Wang Bin, Liang Ganghao, Zhang Hanchen, Xiao Haihua

机构信息

Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China.

University of Chinese Academy of Sciences, Beijing, 100049, PR China.

出版信息

Nat Commun. 2024 Jul 17;15(1):6026. doi: 10.1038/s41467-024-50020-w.


DOI:10.1038/s41467-024-50020-w
PMID:39019855
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11255282/
Abstract

Cationic polymers have great potential for cancer therapy due to their unique interactions with cancer cells. However, their clinical application remains limited by their high toxicity. Here we show a cell membrane-targeting cationic polymer with antineoplastic activity (P) and a second near-infrared (NIR-II) fluorescent biodegradable polymer with photosensitizer Bodipy units and reactive oxygen species (ROS) responsive thioketal bonds (P). Subsequently, these two polymers can self-assemble into antineoplastic nanoparticles (denoted mt-NP) which could further accumulate at the tumor and destroy cell membranes through electrostatic interactions, resulting in cell membrane destabilization. Meanwhile, the photosensitizer Bodipy produces ROS to induce damage to cell membranes, proteins, and DNAs to kill cancer cells concertedly, finally resulting in cell membrane lysis and cancer cell death. This work highlights the use of near-infrared light to spatially and temporarily control cationic polymers for photodynamic therapy, photo-immunotherapy, and NIR-II fluorescence for bio-imaging.

摘要

阳离子聚合物因其与癌细胞的独特相互作用而在癌症治疗方面具有巨大潜力。然而,它们的临床应用仍受限于其高毒性。在此,我们展示了一种具有抗肿瘤活性的细胞膜靶向阳离子聚合物(P)以及一种带有光敏剂Bodipy单元和活性氧(ROS)响应硫酮键的近红外二区(NIR-II)荧光可生物降解聚合物(P)。随后,这两种聚合物可自组装成抗肿瘤纳米颗粒(称为mt-NP),其可通过静电相互作用进一步在肿瘤部位积聚并破坏细胞膜,导致细胞膜不稳定。同时,光敏剂Bodipy产生活性氧以诱导对细胞膜、蛋白质和DNA的损伤,协同杀死癌细胞,最终导致细胞膜裂解和癌细胞死亡。这项工作突出了利用近红外光在空间和时间上控制阳离子聚合物用于光动力治疗、光免疫治疗以及利用NIR-II荧光进行生物成像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/a048564634e9/41467_2024_50020_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/6389b564315b/41467_2024_50020_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/64161773732c/41467_2024_50020_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/76daf040080c/41467_2024_50020_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/e6f7f6048586/41467_2024_50020_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/ec1817382b4e/41467_2024_50020_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/1f1c40b3ea93/41467_2024_50020_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/a048564634e9/41467_2024_50020_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/6389b564315b/41467_2024_50020_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/64161773732c/41467_2024_50020_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/76daf040080c/41467_2024_50020_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/e6f7f6048586/41467_2024_50020_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/ec1817382b4e/41467_2024_50020_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/1f1c40b3ea93/41467_2024_50020_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e1d/11255282/a048564634e9/41467_2024_50020_Fig7_HTML.jpg

相似文献

[1]
Nanoparticles destabilizing the cell membranes triggered by NIR light for cancer imaging and photo-immunotherapy.

Nat Commun. 2024-7-17

[2]
Self-Sacrificially Degradable Pseudo-Semiconducting Polymer Nanoparticles that Integrate NIR-II Fluorescence Bioimaging, Photodynamic Immunotherapy, and Photo-Activated Chemotherapy.

Adv Mater. 2022-8

[3]
Double pH-sensitive nanotheranostics of polypeptide nanoparticle encapsulated BODIPY with both NIR activated fluorescence and enhanced photodynamic therapy.

J Mater Chem B. 2021-11-3

[4]
Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Near-Infrared Photosensitized Nanoparticles.

Adv Mater. 2017-6-6

[5]
Core-shell polymeric nanoparticles co-loaded with photosensitizer and organic dye for photodynamic therapy guided by fluorescence imaging in near and short-wave infrared spectral regions.

J Nanobiotechnology. 2020-1-23

[6]
ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment.

ACS Appl Mater Interfaces. 2020-7-22

[7]
Facile one-pot synthesis of Ir(III) Bodipy polymeric gemini nanoparticles for tumor selective NIR photoactivated anticancer therapy.

Biomaterials. 2024-9

[8]
Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy.

Bioorg Chem. 2024-7

[9]
pH-Triggered Polypeptides Nanoparticles for Efficient BODIPY Imaging-Guided Near Infrared Photodynamic Therapy.

ACS Appl Mater Interfaces. 2016-4-4

[10]
Ubiquinone-BODIPY nanoparticles for tumor redox-responsive fluorescence imaging and photodynamic activity.

J Mater Chem B. 2021-1-28

引用本文的文献

[1]
Reprogramming Immunodeficiency in Lung Metastases via PD-L1 siRNA Delivery and Antigen Capture of Nanosponge-Mediated Dendritic Cell Modulation.

ACS Nano. 2025-7-15

[2]
Rational Design of Safer Inorganic Nanoparticles via Mechanistic Modeling-Informed Machine Learning.

ACS Nano. 2025-6-17

[3]
Immunomodulating platelet-mimicking nanoparticles for AIE-based enhanced photodynamic immunotherapy against lung cancer.

Mater Today Bio. 2025-3-18

[4]
Rational Design of Safer Inorganic Nanoparticles via Mechanistic Modeling-informed Machine Learning.

Res Sq. 2025-2-18

[5]
NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death.

Bioact Mater. 2024-12-25

本文引用的文献

[1]
Theranostic imaging and multimodal photodynamic therapy and immunotherapy using the mTOR signaling pathway.

Nat Commun. 2023-9-2

[2]
Helical polymers for biological and medical applications.

Nat Rev Chem. 2020-6

[3]
NIR-II Light Accelerated Prodrug Reduction of Pt(IV)-Incorporating Pseudo Semiconducting Polymers for Robust Degradation and Maximized Photothermal/Chemo-Immunotherapy.

Adv Mater. 2023-7

[4]
RHOJ controls EMT-associated resistance to chemotherapy.

Nature. 2023-4

[5]
Cuproptosis Induced by ROS Responsive Nanoparticles with Elesclomol and Copper Combined with αPD-L1 for Enhanced Cancer Immunotherapy.

Adv Mater. 2023-6

[6]
First-line serplulimab or placebo plus chemotherapy in PD-L1-positive esophageal squamous cell carcinoma: a randomized, double-blind phase 3 trial.

Nat Med. 2023-2

[7]
Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80.

Nat Cancer. 2022-12

[8]
Comprehensive Thione-Derived Perylene Diimides and Their Bio-Conjugation for Simultaneous Imaging, Tracking, and Targeted Photodynamic Therapy.

J Am Chem Soc. 2022-9-21

[9]
Rational Design of NIR-II AIEgens with Ultrahigh Quantum Yields for Photo- and Chemiluminescence Imaging.

J Am Chem Soc. 2022-8-24

[10]
Cancer nanomedicine.

Nat Rev Cancer. 2022-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索