Suppr超能文献

转移性肺腺癌:基于影像组学的方法用于测量患者内肿瘤间病变异质性的开发与评估

Metastatic Lung Adenocarcinomas: Development and Evaluation of Radiomic-Based Methods to Measure Baseline Intra-Patient Inter-Tumor Lesion Heterogeneity.

作者信息

Lafon Mathilde, Cousin Sophie, Alamé Mélissa, Nougaret Stéphanie, Italiano Antoine, Crombé Amandine

机构信息

Department of Medical Oncology, Institut Bergonié, Bordeaux, France.

Department of Biopathology, Institut Bergonié, Bordeaux, France.

出版信息

J Imaging Inform Med. 2025 Feb;38(1):148-164. doi: 10.1007/s10278-024-01163-1. Epub 2024 Jul 17.

Abstract

Radiomics has traditionally focused on individual tumors, often neglecting the integration of metastatic disease, particularly in patients with non-small cell lung cancer. This study sought to examine intra-patient inter-tumor lesion heterogeneity indices using radiomics, exploring their relevance in metastatic lung adenocarcinoma. Consecutive adults newly diagnosed with metastatic lung adenocarcinoma underwent contrast-enhanced CT scans for lesion segmentation and radiomic feature extraction. Three methods were devised to measure distances between tumor lesion profiles within the same patient in radiomic space: centroid to lesion, lesion to lesion, and primitive to lesion, with subsequent calculation of mean, range, and standard deviation of these distances. Associations between HIs, disease control rate, objective response rate to first-line treatment, and overall survival were explored. The study included 167 patients (median age 62.3 years) between 2016 and 2019, divided randomly into experimental (N = 117,546 lesions) and validation (N = 50,232 tumor lesions) cohorts. Patients without disease control/objective response and with poorer survival consistently systematically exhibited values of all heterogeneity indices. Multivariable analyses revealed that the range of primitive-to-lesion distances was associated with disease control in both cohorts and with objective response in the validation cohort. This metrics showed univariable associations with overall survival in the experimental. In conclusion, we proposed original methods to estimate the intra-patient inter-tumor lesion heterogeneity using radiomics that demonstrated correlations with patient outcomes, shedding light on the clinical implications of inter-metastases heterogeneity. This underscores the potential of radiomics in understanding and potentially predicting treatment response and prognosis in metastatic lung adenocarcinoma patients.

摘要

传统上,放射组学主要关注单个肿瘤,常常忽视转移性疾病的整合,尤其是在非小细胞肺癌患者中。本研究旨在使用放射组学检查患者体内肿瘤间病变异质性指数,探讨其在转移性肺腺癌中的相关性。连续的新诊断为转移性肺腺癌的成年人接受了对比增强CT扫描,以进行病变分割和放射组学特征提取。设计了三种方法来测量放射组学空间中同一患者体内肿瘤病变轮廓之间的距离:质心到病变、病变到病变以及原始到病变,随后计算这些距离的平均值、范围和标准差。探讨了异质性指数(HIs)、疾病控制率、一线治疗的客观缓解率和总生存期之间的关联。该研究纳入了2016年至2019年间的167例患者(中位年龄62.3岁),随机分为试验组(N = 117,546个病变)和验证组(N = 50,232个肿瘤病变)。没有疾病控制/客观缓解且生存期较差的患者一直系统性地表现出所有异质性指数的值。多变量分析显示,原始到病变距离的范围在两个队列中均与疾病控制相关,在验证队列中与客观缓解相关。该指标在试验组中与总生存期存在单变量关联。总之,我们提出了使用放射组学估计患者体内肿瘤间病变异质性的原始方法,这些方法显示出与患者预后的相关性,揭示了转移灶间异质性的临床意义。这突出了放射组学在理解并潜在预测转移性肺腺癌患者治疗反应和预后方面的潜力。

相似文献

引用本文的文献

本文引用的文献

9
Machine Learning for Lung Cancer Diagnosis, Treatment, and Prognosis.机器学习在肺癌诊断、治疗和预后中的应用。
Genomics Proteomics Bioinformatics. 2022 Oct;20(5):850-866. doi: 10.1016/j.gpb.2022.11.003. Epub 2022 Dec 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验