Natsuhara Daigo, Kiba Yuka, Saito Ryogo, Okamoto Shunya, Nagai Moeto, Yamauchi Yusuke, Kitamura Masashi, Shibata Takayuki
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University Nagoya Aichi 464-8603 Japan
Faculty of Pharmacy and Pharmaceutical Sciences, Josai University Sakado Saitama 350-0295 Japan.
RSC Adv. 2024 Jul 17;14(31):22606-22617. doi: 10.1039/d4ra04055d. eCollection 2024 Jul 12.
This study proposes a sequential liquid dispensing method using a centrifugal microfluidic device operating at a constant rotational speed for the multiplexed genetic detection of nucleic acid targets across multiple samples in a single operation. A pair of passive valves integrated into each microchamber enabled the liquid to fill towards the center of rotation against the centrifugal force, facilitating the complete removal of air inside the microchamber. Liquid manipulation can be achievable without any surface coating of the device by exploiting the inherent hydrophobicity of the polymer. Furthermore, design guidelines for the optimization of microfluidic devices are clarified. Consequently, our proposed method allows direct liquid dispensing into the reaction chambers without cross-contamination while simultaneously metering the sample/reagent volume for the colorimetric loop-mediated isothermal amplification (LAMP) reaction. In addition, we demonstrated the simultaneous detection of four foodborne pathogens ( spp., , spp., and norovirus genogroup II (GII)) across four samples in a centrifugal microfluidic device within 60 min. Furthermore, the device exhibited high quantitation ( > 0.98) of the DNA concentration in the sample. Our proposed method enables a more compact design by eliminating the need for metering chambers and offers a point-of-care testing platform with high simplicity as it operates at a constant rotational speed.
本研究提出了一种顺序液体分配方法,该方法使用以恒定转速运行的离心微流控装置,在一次操作中对多个样本中的核酸靶标进行多重基因检测。集成到每个微腔中的一对被动阀使液体能够逆着离心力向旋转中心填充,有助于完全去除微腔内的空气。通过利用聚合物固有的疏水性,无需对装置进行任何表面涂层即可实现液体操控。此外,还阐明了微流控装置优化的设计指南。因此,我们提出的方法允许将液体直接分配到反应腔中而不会发生交叉污染,同时为比色环介导等温扩增(LAMP)反应计量样品/试剂体积。此外,我们展示了在离心微流控装置中于60分钟内对四个样本中的四种食源性病原体( 种、 种、 种和诺如病毒基因II组(GII))进行同时检测。此外,该装置对样本中的DNA浓度表现出高定量性( >0.98)。我们提出的方法通过消除对计量腔的需求实现了更紧凑的设计,并提供了一个操作简单的即时检测平台,因为它以恒定转速运行。