Suppr超能文献

迈向用于酒精使用障碍的人工智能驱动的神经表观遗传成像生物标志物:一项概念验证研究。

Toward AI-driven neuroepigenetic imaging biomarker for alcohol use disorder: A proof-of-concept study.

作者信息

Dagnew Tewodros Mulugeta, Tseng Chieh-En J, Yoo Chi-Hyeon, Makary Meena M, Goodheart Anna E, Striar Robin, Meyer Tyler N, Rattray Anna K, Kang Leyi, Wolf Kendall A, Fiedler Stephanie A, Tocci Darcy, Shapiro Hannah, Provost Scott, Sultana Eleanor, Liu Yan, Ding Wei, Chen Ping, Kubicki Marek, Shen Shiqian, Catana Ciprian, Zürcher Nicole R, Wey Hsiao-Ying, Hooker Jacob M, Weiss Roger D, Wang Changning

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Systems and Biomedical Engineering Department, Cairo University, Giza, Egypt.

出版信息

iScience. 2024 May 31;27(7):110159. doi: 10.1016/j.isci.2024.110159. eCollection 2024 Jul 19.

Abstract

Alcohol use disorder (AUD) is a disorder of clinical and public health significance requiring novel and improved therapeutic solutions. Both environmental and genetic factors play a significant role in its pathophysiology. However, the underlying epigenetic molecular mechanisms that link the gene-environment interaction in AUD remain largely unknown. In this proof-of-concept study, we showed, for the first time, the neuroepigenetic biomarker capability of non-invasive imaging of class I histone deacetylase (HDAC) epigenetic enzymes in the brain for classifying AUD patients from healthy controls using a machine learning approach in the context of precision diagnosis. Eleven AUD patients and 16 age- and sex-matched healthy controls completed a simultaneous positron emission tomography-magnetic resonance (PET/MR) scan with the HDAC-binding radiotracer [C]Martinostat. Our results showed lower HDAC expression in the anterior cingulate region in AUD. Furthermore, by applying a genetic algorithm feature selection, we identified five particular brain regions whose combined [C]Martinostat relative standard uptake value (SUVR) features could reliably classify AUD vs. controls. We validate their promising classification reliability using a support vector machine classifier. These findings inform the potential of HDAC imaging biomarkers coupled with machine learning tools in the objective diagnosis and molecular translation of AUD that could complement the current diagnostic and statistical manual of mental disorders (DSM)-based intervention to propel precision medicine forward.

摘要

酒精使用障碍(AUD)是一种具有临床和公共卫生意义的疾病,需要新颖且改进的治疗方案。环境和遗传因素在其病理生理学中均起重要作用。然而,在AUD中连接基因 - 环境相互作用的潜在表观遗传分子机制仍 largely未知。在这项概念验证研究中,我们首次展示了在精准诊断背景下,使用机器学习方法,通过对大脑中I类组蛋白去乙酰化酶(HDAC)表观遗传酶进行非侵入性成像来对AUD患者与健康对照进行分类的神经表观遗传生物标志物能力。11名AUD患者和16名年龄及性别匹配的健康对照者完成了一项使用HDAC结合放射性示踪剂[C]Martinostat的同步正电子发射断层扫描 - 磁共振(PET/MR)扫描。我们的结果显示,AUD患者前扣带回区域的HDAC表达较低。此外,通过应用遗传算法特征选择,我们确定了五个特定的脑区,其组合的[C]Martinostat相对标准摄取值(SUVR)特征能够可靠地将AUD患者与对照者区分开来。我们使用支持向量机分类器验证了它们有前景的分类可靠性。这些发现揭示了HDAC成像生物标志物与机器学习工具在AUD的客观诊断和分子转化方面的潜力,这可以补充当前基于《精神障碍诊断与统计手册》(DSM)的干预措施,以推动精准医学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5687/11253155/1e3d52e1ad8e/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验