Suppr超能文献

使用人工神经网络进行心律失常检测。

Cardiac arrhythmia detection using artificial neural network.

作者信息

R G Sangeetha, Anand K Kishore, B Sreevatsan, Kumar A Vishal

机构信息

School of Electronics Engineering, Vellore Institute of Technology, Chennai, Vandalur - Kelambakkam Road, Chennai, 600127, Tamil Nadu, India.

出版信息

Heliyon. 2024 Jun 18;10(12):e33089. doi: 10.1016/j.heliyon.2024.e33089. eCollection 2024 Jun 30.

Abstract

This paper outlines the development of the 'Cardiac Abnormality Monitoring' wearable medical device, aimed at creating a compact safety monitor integrating advanced Artificial Neural Network (ANN) algorithms. Given power consumption constraints and cost-effectiveness, a strategy combining sophisticated instruments with neural network algorithms is proposed to enhance performance. This approach aims to compete with high-end wearable devices, utilizing innovative manufacturing techniques. The paper evaluates the feasibility of employing the Levenberg-Marquardt (LM) ANN algorithm in power-conscious wearable devices, considering its potential for offline embedded systems or IoT gadgets capable of cloud-based data uploading. The Levenberg-Marquardt ANN is chosen primarily for its practicality in prototype development, with other neural network algorithms also explored to identify potential alternatives. We have compared the six neural network models and determined the model that has the potential to replace the primary neural network model. We found that the 'Kernelized SVC with PCA' can test accuracy. To be specific, in this paper, we will evaluate the performance of the ANN model and also check its feasibility and practicality by integrating it with a constructed prototypical working model.

摘要

本文概述了“心脏异常监测”可穿戴医疗设备的开发,旨在创建一个集成先进人工神经网络(ANN)算法的紧凑型安全监测器。考虑到功耗限制和成本效益,提出了一种将精密仪器与神经网络算法相结合的策略来提高性能。这种方法旨在利用创新制造技术与高端可穿戴设备竞争。本文评估了在注重功耗的可穿戴设备中采用Levenberg-Marquardt(LM)人工神经网络算法的可行性,考虑到其在能够进行基于云的数据上传的离线嵌入式系统或物联网小工具中的潜力。选择Levenberg-Marquardt人工神经网络主要是因为其在原型开发中的实用性,同时也探索了其他神经网络算法以确定潜在的替代方案。我们比较了六种神经网络模型,并确定了有可能取代主要神经网络模型的模型。我们发现“带主成分分析的核支持向量分类器”可以测试准确性。具体而言,在本文中,我们将评估人工神经网络模型的性能,并通过将其与构建的原型工作模型集成来检查其可行性和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ac75/11252750/75a8b37dbbb5/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验