Department of Land Management, Zhejiang University, Hangzhou, 310058, China.
Swiss Federal Research Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland.
Sci Data. 2023 May 26;10(1):321. doi: 10.1038/s41597-023-02240-w.
Understanding the spatiotemporal dynamics of global 3D urban expansion over time is becoming increasingly crucial for achieving long-term development goals. In this study, we generated a global dataset of annual urban 3D expansion (1990-2010) using World Settlement Footprint 2015 data, GAIA data, and ALOS AW3D30 data with a three-step technical framework: (1) extracting the global constructed land to generate the research area, (2) neighborhood analysis to calculate the original normalized DSM and slope height of each pixel in the study area, and (3) slope correction for areas with a slope greater than 10° to improve the accuracy of estimated building heights. The cross-validation results indicate that our dataset is reliable in the United States(R = 0.821), Europe(R = 0.863), China(R = 0.796), and across the world(R = 0.811). As we know, this is the first 30-meter 3D urban expansion dataset across the globe, which can give unique information to understand and address the implications of urbanization on food security, biodiversity, climate change, and public well-being and health.
了解全球三维城市扩张的时空动态对于实现长期发展目标变得越来越重要。在这项研究中,我们使用 2015 年世界住区地图集、GAIA 数据和 ALOS AW3D30 数据,通过三步技术框架生成了全球年度城市三维扩张数据集(1990-2010 年):(1)提取全球建设用地,生成研究区域;(2)邻域分析,计算研究区域中每个像素的原始归一化 DSM 和坡度高度;(3)对坡度大于 10°的区域进行坡度校正,以提高建筑物高度估计的准确性。交叉验证结果表明,我们的数据集在美国(R=0.821)、欧洲(R=0.863)、中国(R=0.796)和全球范围内(R=0.811)是可靠的。据我们所知,这是全球首个 30 米全球三维城市扩张数据集,它可以提供独特的信息,帮助我们了解和应对城市化对粮食安全、生物多样性、气候变化以及公众福祉和健康的影响。