Suppr超能文献

人工酶的拓展极限:氧化酶纳米酶在激活结构蛋白进行共价交联及赋予显著抗蛋白水解能力方面的前所未有的催化作用。

Expanding limits of artificial enzymes: unprecedented catalysis by an oxidase nanozyme in activating a structural protein for covalent crosslinking and conferring remarkable proteolytic resistance.

作者信息

Fatrekar Adarsh P, Morajkar Rasmi V, Vernekar Amit A

机构信息

Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute Chennai-600020 Tamil Nadu India

Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India.

出版信息

Chem Sci. 2024 Aug 20;15(36):14726-38. doi: 10.1039/d4sc03767g.

Abstract

Nature has endowed us with some complex enzymes capable of utilizing proteins as their substrates to generate functional proteins through post-translational modification. However, nanozymes' interplay with proteins as substrates is scarce, with their chemistry predominantly established using only small molecule substrates, featuring a significant gap in this area. Due to the huge prospects of nanozymes in biotechnological and therapeutic interventions, studies establishing the unexplored roles of nanozymes in the biological environments and their interplay beyond small molecule substrates warrant immediate attention. In this study, we unveil the unprecedented role of a Mn-based oxidase nanozyme (MnN) in activating a structural protein, collagen, and covalently crosslinking its tyrosine residues with only a trace amount of tannic acid (TA) without compromising its triple-helical structural integrity. While therapeutic applications demand materials prepared from collagen, the current chemical and physical crosslinking of collagen often presents significant challenges such as toxicity, denaturation, or high costs. MnN lucidly accomplishes crosslinking interplay at its 101 facets using oxygen as a co-substrate under mild conditions. This process takes advantage of MnN being active at mild acidic pH where collagen preferentially exists as a soluble triple helix (monomeric form), exposing functionalities and enhancing the crosslinking degree. Importantly, this reaction also confers 100% resistance to collagenase attack on the collagen tendon-derived biological material. The catalyzed TA-tyrosine linkage in the telopeptide region of collagen probably impedes the initial recognition step of collagenase, providing robust protection against its degradative action. Our study not only expands the repertoire of nanozymes' substrates beyond the existing library of small molecules but also establishes a significant step toward designing a gold standard for collagen crosslinking. With biomedical applications demanding biomaterials derived from protein scaffolds with preserved structural integrity, our investigation bridges the gap between nanozymes' chemistry and crosslinking proteins, opening exciting prospects for biomaterial development.

摘要

大自然赋予了我们一些复杂的酶,这些酶能够利用蛋白质作为底物,通过翻译后修饰生成功能性蛋白质。然而,纳米酶与作为底物的蛋白质之间的相互作用却很少,其化学性质主要仅通过小分子底物来确定,在这一领域存在显著差距。由于纳米酶在生物技术和治疗干预方面具有巨大前景,因此研究纳米酶在生物环境中尚未被探索的作用及其与小分子底物之外的相互作用值得立即关注。在本研究中,我们揭示了一种基于锰的氧化酶纳米酶(MnN)在激活结构蛋白胶原蛋白并仅使用痕量单宁酸(TA)将其酪氨酸残基共价交联方面的前所未有的作用,同时不损害其三螺旋结构完整性。虽然治疗应用需要由胶原蛋白制备的材料,但目前胶原蛋白的化学和物理交联常常带来诸如毒性、变性或高成本等重大挑战。MnN在温和条件下以氧气作为共底物,在其101个晶面清晰地完成交联相互作用。这个过程利用了MnN在温和酸性pH下具有活性,此时胶原蛋白优先以可溶性三螺旋(单体形式)存在,暴露出官能团并提高交联程度。重要的是,该反应还赋予源自胶原蛋白肌腱的生物材料100%抵抗胶原酶攻击的能力。胶原蛋白端肽区域中催化的TA - 酪氨酸键可能阻碍了胶原酶的初始识别步骤,为其降解作用提供了强大保护。我们的研究不仅将纳米酶底物的范围扩展到现有的小分子库之外,而且朝着设计胶原蛋白交联的金标准迈出了重要一步。随着生物医学应用对源自具有保留结构完整性的蛋白质支架的生物材料的需求,我们的研究弥合了纳米酶化学与交联蛋白质之间的差距,为生物材料开发开辟了令人兴奋的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e71/11410005/a6784bb3ac97/d4sc03767g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验