Suppr超能文献

relA基因参与由肽聚糖生物合成抑制剂诱导的大肠杆菌自溶过程。

Involvement of the relA gene in the autolysis of Escherichia coli induced by inhibitors of peptidoglycan biosynthesis.

作者信息

Kusser W, Ishiguro E E

出版信息

J Bacteriol. 1985 Nov;164(2):861-5. doi: 10.1128/jb.164.2.861-865.1985.

Abstract

It is generally assumed that inhibitors of peptidoglycan biosynthesis do not kill nongrowing bacteria. An exceptional case is reported here. The addition of chloramphenicol to amino acid-deprived cultures of relA+ strains of Escherichia coli which were treated with beta-lactam antibiotics, D-cycloserine, or moenomycin resulted in lysis. This phenomenon is termed chloramphenicol-dependent lysis. To be effective, chloramphenicol had to be present at its minimum growth-inhibitory concentration (or higher). Analogs of chloramphenicol which did not bind to ribosomes were completely ineffective. Amino acid deprivation was actually not required to demonstrate chloramphenicol-dependent lysis, and cultures treated with growth-inhibitory levels of chloramphenicol alone were lysed when challenged with inhibitors of peptidoglycan synthesis. Peptidoglycan synthesis has been shown previously to be under stringent (relA+) control, and chloramphenicol is known to be an antagonist of stringent control. Thus, it is proposed that the mechanism of chloramphenicol-dependent lysis is based on the ability of chloramphenicol to relax peptidoglycan synthesis in nongrowing relA+ bacteria. This is also consistent with the observation that treatment of amino acid-deprived relA mutants with inhibitors of peptidoglycan synthesis resulted in lysis, i.e., without the mediation of chloramphenicol.

摘要

一般认为,肽聚糖生物合成抑制剂不会杀死非生长状态的细菌。本文报道了一个例外情况。将氯霉素添加到用β-内酰胺抗生素、D-环丝氨酸或莫能菌素处理的大肠杆菌relA⁺菌株的氨基酸饥饿培养物中会导致细胞裂解。这种现象被称为氯霉素依赖性裂解。要产生效果,氯霉素必须以其最低生长抑制浓度(或更高)存在。不与核糖体结合的氯霉素类似物完全无效。实际上,证明氯霉素依赖性裂解并不需要氨基酸饥饿,当用肽聚糖合成抑制剂进行挑战时,仅用生长抑制水平的氯霉素处理的培养物会发生裂解。先前已表明肽聚糖合成受严谨型(relA⁺)控制,并且已知氯霉素是严谨型控制的拮抗剂。因此,有人提出氯霉素依赖性裂解的机制基于氯霉素使非生长的relA⁺细菌中的肽聚糖合成松弛的能力。这也与以下观察结果一致,即用肽聚糖合成抑制剂处理氨基酸饥饿的relA突变体导致细胞裂解,即无需氯霉素的介导。

相似文献

9
Correlation between the effects of fosfomycin and chloramphenicol on Escherichia coli.
FEMS Microbiol Lett. 1990 Jan 1;54(1-3):129-33. doi: 10.1016/0378-1097(90)90270-z.

引用本文的文献

1
2
Bacterial metabolism and susceptibility to cell wall-active antibiotics.细菌代谢与细胞壁活性抗生素的敏感性。
Adv Microb Physiol. 2023;83:181-219. doi: 10.1016/bs.ampbs.2023.04.002. Epub 2023 May 16.
5
Understanding tolerance to cell wall-active antibiotics.理解细胞壁活性抗生素的耐受性。
Ann N Y Acad Sci. 2021 Jul;1496(1):35-58. doi: 10.1111/nyas.14541. Epub 2020 Dec 3.
6
Diversity in (p)ppGpp Levels and Its Consequences.(p)ppGpp水平的多样性及其后果。
Front Microbiol. 2020 Aug 12;11:1759. doi: 10.3389/fmicb.2020.01759. eCollection 2020.
9
Acute Bacterial Meningitis: Challenges to Better Antibiotic Therapy.急性细菌性脑膜炎:优化抗生素治疗面临的挑战
ACS Infect Dis. 2019 Dec 13;5(12):1987-1995. doi: 10.1021/acsinfecdis.9b00122. Epub 2019 Jul 3.

本文引用的文献

2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验