Suppr超能文献

人工智能改善心血管疾病风险预测。

Artificial intelligence improves risk prediction in cardiovascular disease.

作者信息

Teshale Achamyeleh Birhanu, Htun Htet Lin, Vered Mor, Owen Alice J, Ryan Joanne, Tonkin Andrew, Freak-Poli Rosanne

机构信息

School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

Department of Epidemiology and Biostatistics, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.

出版信息

Geroscience. 2024 Nov 22. doi: 10.1007/s11357-024-01438-z.

Abstract

Cardiovascular disease (CVD) represents a major public health issue, claiming numerous lives. This study aimed to demonstrate the advantages of employing artificial intelligence (AI) models to improve the prediction of CVD risk using a large cohort of relatively healthy adults aged 70 years or more. In this study, deep learning (DL) models provide enhanced predictions (DeepSurv: C-index = 0.662, Integrated Brier Score (IBS) = 0.046; Neural Multi-Task Logistic Regression (NMTLR): C-index = 0.660, IBS = 0.047), as compared to the conventional (Cox: C-index = 0.634, IBS = 0.048) and machine learning (Random Survival Forest (RSF): C-index = 0.641, IBS = 0.048) models. The risk scores generated by the DL models also demonstrated superior performance. Moreover, AI models (NMTLR, DeepSurv, and RSF) were more effective, requiring the treatment of only 9 to 10 patients to prevent one CVD event, compared to the conventional model requiring treatment of nearly four times higher number of patients (NNT = 38). In summary, AI models, particularly DL models, possess superior predictive capabilities that can enhance patient treatment in a more cost-effective manner. Nonetheless, AI tools should serve to complement and assist healthcare professionals, rather than supplant them. The DeepSurv model, selected due to its relatively superior performance, is deployed in the form of web application locally, and is accessible on GitHub ( https://github.com/Robidar/Chuchu_Depl ). Finally, as we have demonstrated the benefit of using AI for reassessment of an existing CVD risk score, we recommend other infamous risk scores undergo similar reassessment.

摘要

心血管疾病(CVD)是一个重大的公共卫生问题,夺走了无数生命。本研究旨在证明使用人工智能(AI)模型的优势,以利用一大群70岁及以上相对健康的成年人来改善CVD风险预测。在本研究中,与传统(Cox:C指数 = 0.634,综合Brier评分(IBS) = 0.048)和机器学习(随机生存森林(RSF):C指数 = 0.641,IBS = 0.048)模型相比,深度学习(DL)模型提供了更好的预测(DeepSurv:C指数 = 0.662,IBS = 0.046;神经多任务逻辑回归(NMTLR):C指数 = 0.660,IBS = 0.047)。DL模型生成的风险评分也表现出卓越的性能。此外,与传统模型相比,AI模型(NMTLR、DeepSurv和RSF)更有效,预防一次CVD事件仅需治疗9至10名患者,而传统模型需要治疗的患者数量几乎是其四倍(需治疗人数(NNT) = 38)。总之,AI模型,特别是DL模型,具有卓越的预测能力,能够以更具成本效益的方式改善患者治疗。尽管如此,AI工具应起到补充和协助医疗保健专业人员的作用,而不是取代他们。由于其相对卓越的性能而被选中的DeepSurv模型,以Web应用程序的形式在本地部署,可在GitHub(https://github.com/Robidar/Chuchu_Depl)上访问。最后,鉴于我们已经证明了使用AI重新评估现有CVD风险评分的益处,我们建议对其他著名的风险评分进行类似的重新评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验