Jang Yeonggul, Jung Juyeong, Hong Youngtaek, Lee Jina, Jeong Hyunseok, Shim Hackjoon, Chang Hyuk-Jae
IEEE J Biomed Health Inform. 2024 Dec;28(12):7151-7163. doi: 10.1109/JBHI.2024.3431028. Epub 2024 Dec 5.
Heart auscultation is a simple and inexpensive first-line diagnostic test for the early screening of heart abnormalities. A phonocardiogram (PCG) is a digital recording of an analog heart sound acquired using an electronic stethoscope. A computerized algorithm for PCG analysis can aid in detecting abnormal signal patterns and support the clinical use of auscultation. It is important to detect fundamental components, such as the first and second heart sounds (S1 and S2), to accurately diagnose heart abnormalities. In this study, we developed a fully convolutional hybrid fusion network to identify S1 and S2 locations in PCG. It enables timewise, high-level feature fusion from dimensionally heterogeneous features: 1D envelope and 2D spectral features. For the fusion of heterogeneous features, we proposed a novel convolutional multimodal factorized bilinear pooling approach that enables high-level fusion without temporal distortion. We experimentally demonstrated the benefits of the comprehensive interpretation of heterogeneous features, with the proposed method outperforming other state-of-the-art PCG segmentation methods. To the best of our knowledge, this is the first study to interpret heterogeneous features through a high level of feature fusion in PCG analysis.
心脏听诊是一种简单且成本低廉的一线诊断测试,用于心脏异常的早期筛查。心音图(PCG)是使用电子听诊器获取的模拟心音的数字记录。一种用于PCG分析的计算机算法可以帮助检测异常信号模式,并支持听诊的临床应用。检测诸如第一和第二心音(S1和S2)等基本成分对于准确诊断心脏异常很重要。在本研究中,我们开发了一种全卷积混合融合网络,以识别PCG中S1和S2的位置。它能够从维度异构特征(1D包络和2D频谱特征)进行时间上的高级特征融合。对于异构特征的融合,我们提出了一种新颖的卷积多模态分解双线性池化方法,该方法能够在不产生时间失真的情况下进行高级融合。我们通过实验证明了对异构特征进行综合解释的好处,所提出的方法优于其他现有的PCG分割方法。据我们所知,这是第一项在PCG分析中通过高级特征融合来解释异构特征的研究。