Suppr超能文献

全脑功能连接性:来自纳入电突触的下一代神经团块建模的见解。

Whole brain functional connectivity: Insights from next generation neural mass modelling incorporating electrical synapses.

作者信息

Forrester Michael, Petros Sammy, Cattell Oliver, Lai Yi Ming, O'Dea Reuben D, Sotiropoulos Stamatios, Coombes Stephen

机构信息

Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.

Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom.

出版信息

PLoS Comput Biol. 2024 Dec 5;20(12):e1012647. doi: 10.1371/journal.pcbi.1012647. eCollection 2024 Dec.

Abstract

The ready availability of brain connectome data has both inspired and facilitated the modelling of whole brain activity using networks of phenomenological neural mass models that can incorporate both interaction strength and tract length between brain regions. Recently, a new class of neural mass model has been developed from an exact mean field reduction of a network of spiking cortical cell models with a biophysically realistic model of the chemical synapse. Moreover, this new population dynamics model can naturally incorporate electrical synapses. Here we demonstrate the ability of this new modelling framework, when combined with data from the Human Connectome Project, to generate patterns of functional connectivity (FC) of the type observed in both magnetoencephalography and functional magnetic resonance neuroimaging. Some limited explanatory power is obtained via an eigenmode description of frequency-specific FC patterns, obtained via a linear stability analysis of the network steady state in the neigbourhood of a Hopf bifurcation. However, direct numerical simulations show that empirical data is more faithfully recapitulated in the nonlinear regime, and exposes a key role of gap junction coupling strength in generating empirically-observed neural activity, and associated FC patterns and their evolution. Thereby, we emphasise the importance of maintaining known links with biological reality when developing multi-scale models of brain dynamics. As a tool for the study of dynamic whole brain models of the type presented here we further provide a suite of C++ codes for the efficient, and user friendly, simulation of neural mass networks with multiple delayed interactions.

摘要

脑连接组数据的现成可得性既激发了也促进了使用现象学神经团模型网络对全脑活动进行建模,这些模型能够纳入脑区之间的相互作用强度和纤维束长度。最近,一类新的神经团模型是从具有化学突触生物物理现实模型的脉冲发放皮质细胞模型网络的精确平均场约简中发展而来的。此外,这个新的群体动力学模型能够自然地纳入电突触。在这里,我们展示了这个新的建模框架与人类连接组计划的数据相结合时,生成在脑磁图和功能磁共振神经成像中观察到的那种功能连接(FC)模式的能力。通过对霍普夫分岔附近网络稳态的线性稳定性分析获得的频率特异性FC模式的本征模描述,获得了一些有限的解释力。然而,直接数值模拟表明,在非线性 regime中,经验数据能更忠实地重现,并且揭示了间隙连接耦合强度在生成经验观察到的神经活动以及相关的FC模式及其演变中的关键作用。因此,我们强调在开发脑动力学多尺度模型时保持与生物学现实的已知联系的重要性。作为研究此处呈现的这种动态全脑模型的工具,我们进一步提供了一套C++代码,用于高效且用户友好地模拟具有多个延迟相互作用的神经团网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8395/11651611/3b23c719865a/pcbi.1012647.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验