Suppr超能文献

一种捕获基于电导的自适应二次积分和放电神经元模型网络异步不规则动力学的平均场方法。

A Mean Field to Capture Asynchronous Irregular Dynamics of Conductance-Based Networks of Adaptive Quadratic Integrate-and-Fire Neuron Models.

机构信息

Mathematical Institute, University of Oxford, OX2 6GG, Oxford, U.K.

Paris-Saclay University, Institute of Neuroscience, CNRS, 91400 Saclay, France.

出版信息

Neural Comput. 2024 Jun 7;36(7):1433-1448. doi: 10.1162/neco_a_01670.

Abstract

Mean-field models are a class of models used in computational neuroscience to study the behavior of large populations of neurons. These models are based on the idea of representing the activity of a large number of neurons as the average behavior of mean-field variables. This abstraction allows the study of large-scale neural dynamics in a computationally efficient and mathematically tractable manner. One of these methods, based on a semianalytical approach, has previously been applied to different types of single-neuron models, but never to models based on a quadratic form. In this work, we adapted this method to quadratic integrate-and-fire neuron models with adaptation and conductance-based synaptic interactions. We validated the mean-field model by comparing it to the spiking network model. This mean-field model should be useful to model large-scale activity based on quadratic neurons interacting with conductance-based synapses.

摘要

均值场模型是计算神经科学中用于研究大量神经元行为的一类模型。这些模型基于将大量神经元的活动表示为均值场变量的平均行为的思想。这种抽象允许以计算高效和数学上易于处理的方式研究大规模神经动力学。其中一种方法基于半解析方法,先前已应用于不同类型的单神经元模型,但从未应用于基于二次形式的模型。在这项工作中,我们将该方法应用于具有适应性和基于电导的突触相互作用的二次积分和放电神经元模型。我们通过将均值场模型与尖峰网络模型进行比较来验证该模型。该均值场模型应该有助于基于具有基于电导的突触相互作用的二次神经元的大规模活动建模。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验