Huang Bingyu, Gu Qiao, Tang Xiannong, Lützenkirchen-Hecht Dirk, Yuan Kai, Chen Yiwang
College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, Nanchang, 330031, PR China.
College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
Nat Commun. 2024 Jul 19;15(1):6077. doi: 10.1038/s41467-024-50377-y.
Microenvironmental modifications on metal sites are crucial to tune oxygen reduction catalytic behavior and decrypt intrinsic mechanism, whereas the stochastic properties of traditional pyrolyzed single-atom catalysts induce vague recognition on structure-reactivity relations. Herein, we report a theoretical descriptor relying on binding energies of oxygen adsorbates and directly associating the derived Sabatier volcano plot with calculated overpotential to forecast catalytic efficiency of cobalt porphyrin. This Sabatier volcano plot instructs that electron-withdrawing substituents mitigate the over-strong *OH intermediate adsorption by virtue of the decreased proportion of electrons in bonding orbital. To experimentally validate this speculation, we implement a secondary sphere microenvironment customization strategy on cobalt porphyrin-based polymer nanocomposite analogs. Systematic X-ray spectroscopic and in situ electrochemical characterizations capture the pronounced accessible active site density and the fast interfacial/outward charge migration kinetics contributions for the optimal carboxyl group-substituted catalyst. This work offers ample strategies for designing single-atom catalysts with well-managed microenvironment under the guidance of Sabatier volcano map.
金属位点上的微环境修饰对于调节氧还原催化行为和解开内在机制至关重要,然而传统热解单原子催化剂的随机特性导致对结构-反应性关系的认识模糊。在此,我们报告了一种基于氧吸附物结合能的理论描述符,并将推导的萨巴蒂尔火山图与计算的过电位直接关联,以预测钴卟啉的催化效率。该萨巴蒂尔火山图表明,吸电子取代基通过降低成键轨道中电子的比例减轻了*OH中间体的过强吸附。为了通过实验验证这一推测,我们在基于钴卟啉的聚合物纳米复合材料类似物上实施了二级球微环境定制策略。系统的X射线光谱和原位电化学表征揭示了最佳羧基取代催化剂具有显著的可及活性位点密度和快速的界面/向外电荷迁移动力学贡献。这项工作为在萨巴蒂尔火山图指导下设计具有良好微环境管理的单原子催化剂提供了丰富的策略。